Discover the most talked about and latest scientific content & concepts.


Prolonged symptom duration and disability are common in adults hospitalized with severe coronavirus disease 2019 (COVID-19). Characterizing return to baseline health among outpatients with milder COVID-19 illness is important for understanding the full spectrum of COVID-19-associated illness and tailoring public health messaging, interventions, and policy. During April 15-June 25, 2020, telephone interviews were conducted with a random sample of adults aged ≥18 years who had a first positive reverse transcription-polymerase chain reaction (RT-PCR) test for SARS-CoV-2, the virus that causes COVID-19, at an outpatient visit at one of 14 U.S. academic health care systems in 13 states. Interviews were conducted 14-21 days after the test date. Respondents were asked about demographic characteristics, baseline chronic medical conditions, symptoms present at the time of testing, whether those symptoms had resolved by the interview date, and whether they had returned to their usual state of health at the time of interview. Among 292 respondents, 94% (274) reported experiencing one or more symptoms at the time of testing; 35% of these symptomatic respondents reported not having returned to their usual state of health by the date of the interview (median = 16 days from testing date), including 26% among those aged 18-34 years, 32% among those aged 35-49 years, and 47% among those aged ≥50 years. Among respondents reporting cough, fatigue, or shortness of breath at the time of testing, 43%, 35%, and 29%, respectively, continued to experience these symptoms at the time of the interview. These findings indicate that COVID-19 can result in prolonged illness even among persons with milder outpatient illness, including young adults. Effective public health messaging targeting these groups is warranted. Preventative measures, including social distancing, frequent handwashing, and the consistent and correct use of face coverings in public, should be strongly encouraged to slow the spread of SARS-CoV-2.


Body odour is a characteristic trait of Homo sapiens, however its role in human behaviour and evolution is poorly understood. Remarkably, body odour is linked to the presence of a few species of commensal microbes. Herein we discover a bacterial enzyme, limited to odour-forming staphylococci that are able to cleave odourless precursors of thioalcohols, the most pungent components of body odour. We demonstrated using phylogenetics, biochemistry and structural biology that this cysteine-thiol lyase (C-T lyase) is a PLP-dependent enzyme that moved horizontally into a unique monophyletic group of odour-forming staphylococci about 60 million years ago, and has subsequently tailored its enzymatic function to human-derived thioalcohol precursors. Significantly, transfer of this enzyme alone to non-odour producing staphylococci confers odour production, demonstrating that this C-T lyase is both necessary and sufficient for thioalcohol formation. The structure of the C-T lyase compared to that of other related enzymes reveals how the adaptation to thioalcohol precursors has evolved through changes in the binding site to create a constrained hydrophobic pocket that is selective for branched aliphatic thioalcohol ligands. The ancestral acquisition of this enzyme, and the subsequent evolution of the specificity for thioalcohol precursors implies that body odour production in humans is an ancient process.


Coronavirus disease 2019 (COVID-19) continues to cause considerable morbidity and mortality worldwide. Case reports of hospitalized patients suggest that COVID-19 prominently affects the cardiovascular system, but the overall impact remains unknown.


The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated in Wuhan, China in late 2019, and its resulting coronavirus disease, COVID-19, was declared a pandemic by the World Health Organization on March 11, 2020. The rapid global spread of COVID-19 represents perhaps the most significant public health emergency in a century. As the pandemic progressed, a continued paucity of evidence on routes of SARS-CoV-2 transmission has resulted in shifting infection prevention and control guidelines between classically-defined airborne and droplet precautions. During the initial isolation of 13 individuals with COVID-19 at the University of Nebraska Medical Center, we collected air and surface samples to examine viral shedding from isolated individuals. We detected viral contamination among all samples, supporting the use of airborne isolation precautions when caring for COVID-19 patients.


Scores on an optimistic-pessimistic personality scale have been associated with mortality, but optimism and pessimism scores are separable traits and it is unclear which has effects on health or longevity. The Life Orientation Test (LOT), containing items for optimism and pessimism, was included in a twin study on health of Australians aged over 50 in 1993-1995. After a mean of 20 years, participants were matched against death information from the Australian National Death Index. 1,068 out of 2,978 participants with useable LOT scores had died. Survival analysis tested for associations between separate optimism and pessimism scores and mortality from any cause, and from cancers, cardiovascular diseases or other known causes. Age-adjusted scores on the pessimism scale were associated with all-cause and cardiovascular mortality (Hazard Ratios per 1 standard deviation unit, 95% confidence intervals and p-values 1.134, 1.065-1.207, 8.85 × 10-5 and 1.196, 1.045-1.368, 0.0093, respectively) but not with cancer deaths. Optimism scores, which were only weakly correlated with pessimism scores (age-adjusted rank correlation = - 0.176), did not show significant associations with overall or cause-specific mortality. Reverse causation (disease causing pessimism) is unlikely because in that case both cardiovascular diseases and cancers would be expected to lead to pessimism.


The accurate detection of SARS-CoV-2 through respiratory sampling is critical for the prevention of further transmission and the timely initiation of treatment for COVID-19. There is a diverse range of SARS-CoV-2 detection rates in reported studies, with uncertainty as to the optimal sampling strategy for COVID-19 diagnosis and monitoring.


There are outstanding evolutionary questions on the recent emergence of human coronavirus SARS-CoV-2 including the role of reservoir species, the role of recombination and its time of divergence from animal viruses. We find that the sarbecoviruses-the viral subgenus containing SARS-CoV and SARS-CoV-2-undergo frequent recombination and exhibit spatially structured genetic diversity on a regional scale in China. SARS-CoV-2 itself is not a recombinant of any sarbecoviruses detected to date, and its receptor-binding motif, important for specificity to human ACE2 receptors, appears to be an ancestral trait shared with bat viruses and not one acquired recently via recombination. To employ phylogenetic dating methods, recombinant regions of a 68-genome sarbecovirus alignment were removed with three independent methods. Bayesian evolutionary rate and divergence date estimates were shown to be consistent for these three approaches and for two different prior specifications of evolutionary rates based on HCoV-OC43 and MERS-CoV. Divergence dates between SARS-CoV-2 and the bat sarbecovirus reservoir were estimated as 1948 (95% highest posterior density (HPD): 1879-1999), 1969 (95% HPD: 1930-2000) and 1982 (95% HPD: 1948-2009), indicating that the lineage giving rise to SARS-CoV-2 has been circulating unnoticed in bats for decades.


Novel antimicrobials are urgently needed to combat drug-resistant bacteria and to overcome the inherent difficulties in treating biofilm-associated infections. Studying plants and other natural materials used in historical infection remedies may enable further discoveries to help fill the antibiotic discovery gap. We previously reconstructed a 1,000-year-old remedy containing onion, garlic, wine, and bile salts, known as ‘Bald’s eyesalve’, and showed it had promising antibacterial activity. In this current paper, we have found this bactericidal activity extends to a range of Gram-negative and Gram-positive wound pathogens in planktonic culture and, crucially, that this activity is maintained against Acinetobacter baumannii, Stenotrophomonas maltophilia, Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus pyogenes in a soft-tissue wound biofilm model. While the presence of garlic in the mixture can explain the activity against planktonic cultures, garlic has no activity against biofilms. We have found the potent anti-biofilm activity of Bald’s eyesalve cannot be attributed to a single ingredient and requires the combination of all ingredients to achieve full activity. Our work highlights the need to explore not only single compounds but also mixtures of natural products for treating biofilm infections and underlines the importance of working with biofilm models when exploring natural products for the anti-biofilm pipeline.


The cave lion is an extinct felid that was widespread across the Holarctic throughout the Late Pleistocene. Its closest extant relative is the lion (Panthera leo), but the timing of the divergence between these two taxa, as well as their taxonomic ranking are contentious. In this study we analyse 31 mitochondrial genome sequences from cave lion individuals that, through a combination of 14C and genetic tip dating, are estimated to be from dates extending well into the mid-Pleistocene. We identified two deeply diverged and well-supported reciprocally monophyletic mitogenome clades in the cave lion, and an additional third distinct lineage represented by a single individual. One of these clades was restricted to Beringia while the other was prevalent across western Eurasia. These observed clade distributions are in line with previous observations that Beringian and European cave lions were morphologically distinct. The divergence dates for these lineages are estimated to be far older than those between extant lions subspecies. By combining our radiocarbon tip-dates with a split time prior that takes into account the most up-to-date fossil stem calibrations, we estimated the mitochondrial DNA divergence between cave lions and lions to be 1.85 Million ya (95% 0.52- 2.91 Mya). Taken together, these results support previous hypotheses that cave lions existed as at least two subspecies during the Pleistocene, and that lions and cave lions were distinct species.


In the absence of a vaccine, social distancing measures are one of the primary tools to reduce the transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, which causes coronavirus disease 2019 (COVID-19). We show that social distancing following US state-level emergency declarations substantially varies by income. Using mobility measures derived from mobile device location pings, we find that wealthier areas decreased mobility significantly more than poorer areas, and this general pattern holds across income quantiles, data sources, and mobility measures. Using an event study design focusing on behavior subsequent to state emergency orders, we document a reversal in the ordering of social distancing by income: Wealthy areas went from most mobile before the pandemic to least mobile, while, for multiple measures, the poorest areas went from least mobile to most. Previous research has shown that lower income communities have higher levels of preexisting health conditions and lower access to healthcare. Combining this with our core finding-that lower income communities exhibit less social distancing-suggests a double burden of the COVID-19 pandemic with stark distributional implications.