SciCombinator

Discover the most talked about and latest scientific content & concepts.

 

0

The purpose of this study was to develop, optimize, and fully validate a high-sensitivity methodology using UHPLC-MS/MS to simultaneously quantify hesperidin and naringenin in microsamples (100 µL) of murine plasma after intragastric administration of single pure flavonoids and a mixture. The optimization process allowed for high sensitivity with detection limits of approximately picogram order using an electrospray ionization (ESI) source in negative mode and an experiment based on multiple reaction monitoring (MRM). The validation parameters showed excellent linearity and detection limits, with a precision of less than 8% and a recovery of over 90%. This methodology was applied to compare the pharmacokinetic parameters for the administration of hesperidin and naringenin in individual form or in the form of a mixture. The results showed an absence of significant effects (p > 0.05) for Tmax and Cmax; however, the AUC presented significant differences (p < 0.05) for both flavonoids when administered as a mixture, showing an improved absorption ratio for both flavonoids.

0

The incidence of inflammatory bowel diseases (IBD) and its significance in kidney transplant recipients is not well established. We conducted this systematic review and meta-analysis to assess the incidence of and complications from IBD in adult kidney transplant recipients.

0

Since the eighties, technological tools have modified how people interact in their environment. At the same time, occupational safety and health measures have been widely applied. The European Agency for Safety and Health at Work considers that information and communication technologies are the main methods to achieve the goals proposed to improve working life and the dissemination of good practices. The principal objective was to determine the trends of publications focused on these technologies and occupational safety in the healthcare sector during the last 30 years. A bibliometric study was carried out. The 1021 documents showed an increased trend per country, especially for the United States (p < 0.001) and year (p < 0.001). The citations per year showed significant differences between citations of articles published before 2007 (p < 0.001). The year was also linked to the increase or decrease of articles (72.2%) and reviews (14.9%) (p < 0.001). The analysis of journal co-citations also showed that the main journals (such as Infection Control and Hospital Epidemiology) were linked to other important journals and had a major part in the clusters formed. All these findings were discussed in the manuscript and conclusions were drawn.

0

The increasing demand for more sensors inside vehicles pursues the intention of making vehicles more “intelligent”. In this context, the vision of fully connected and autonomous cars is becoming more tangible and will turn into a reality in the coming years. The use of these intelligent transport systems will allow the integration of efficient performance in terms of route control, fuel consumption, and traffic administration, among others. Future vehicle-to-everything (V2X) communication will require a wider bandwidth as well as lower latencies than current technologies can offer, to support high-constraint safety applications and data exhaustive information exchanges. To this end, recent investigations have proposed the adoption of the millimeter wave (mmWave) bands to achieve high throughput and low latencies. However, mmWave communications come with high constraints for implementation due to higher free-space losses, poor diffraction, poor signal penetration, among other channel impairments for these high-frequency bands. In this work, a V2X communication channel in the mmWave (28 GHz) band is analyzed by a combination of an empirical study and a deterministic simulation with an in-house 3D ray-launching algorithm. Multiple mmWave V2X links has been modeled for a complex heterogeneous urban scenario in order to capture and analyze different propagation phenomena, providing full volumetric estimation of frequency/power as well as time domain parameters. Large- and small-scale propagation parameters are obtained for a combination of different situations, taking into account the obstruction between the transceivers of vehicles of distinct sizes. These results can aid in the development of modeling techniques for the implementation of mmWave frequency bands in the vehicular context, with the capability of adapting to different scenario requirements in terms of network topology, user density, or transceiver location. The proposed methodology provides accurate wireless channel estimation within the complete volume of the scenario under analysis, considering detailed topological characteristics.

0

Phytoremediation is a promising green technique for the restoration of a polluted environment, but there is often a gap between lab and field experiments. The fern, Pteris vittata L., can tolerate a high soil arsenic concentration and rapidly accumulate the metalloid in its fronds. Arbuscular mycorrhizal fungi (AMF) are mutualistic fungi that form a symbiosis with most land plants' roots, improve their growth, and induce stress tolerance. This paper reports the results obtained using P. vittata inoculated with AMF, to extract Arsenic (As) from an industrial site highly contaminated also by other pollutants. Two experiments have been performed. In the first one, AMF colonized ferns were grown for two years under controlled conditions in soil coming from the metallurgic site. Positive effects on plant health and As phytoextraction and accumulation were detected. Then, considering these results, we performed a three year in situ experiment in the industrial site, to assess the remediation of As at two different depths. Our results show that the colonization of P. vittata with AMF improved the remediation process of As with a significant impact on the depth 0-0.2 m.

0

Transient receptor potential (TRP) channel family proteins are sensors for pain, which sense a variety of thermal and noxious chemicals. Sensory neurons innervating the gut abundantly express TRPA1 and TRPV1 channels and are in close proximity of gut microbes. Emerging evidence indicates a bi-directional gut-brain cross-talk in several entero-neuronal pathologies; however, the direct evidence of TRP channels interacting with gut microbial populations is lacking. Herein, we examine whether and how the knockout (KO) of TRPA1 and TRPV1 channels individually or combined TRPA1/V1 double-knockout (dKO) impacts the gut microbiome in mice. We detect distinct microbiome clusters among the three KO mouse models versus wild-type (WT) mice. All three TRP-KO models have reduced microbial diversity, harbor higher abundance of Bacteroidetes, and a reduced proportion of Firmicutes. Specifically distinct arrays in the KO models are determined mainly by S24-7, Bacteroidaceae, Clostridiales, Prevotellaceae, Helicobacteriaceae, Rikenellaceae, and Ruminococcaceae. A1KO mice have lower Prevotella, Desulfovibrio, Bacteroides, Helicobacter and higher Rikenellaceae and Tenericutes; V1KO mice demonstrate higher Ruminococcaceae, Lachnospiraceae, Ruminococcus, Desulfovibrio and Mucispirillum; and A1V1dKO mice exhibit higher Bacteroidetes, Bacteroides and S24-7 and lower Firmicutes, Ruminococcaceae, Oscillospira, Lactobacillus and Sutterella abundance. Furthermore, the abundance of taxa involved in biosynthesis of lipids and primary and secondary bile acids is higher while that of fatty acid biosynthesis-associated taxa is lower in all KO groups. To our knowledge, this is the first study demonstrating distinct gut microbiome signatures in TRPA1, V1 and dKO models and should facilitate prospective studies exploring novel diagnostic/ therapeutic modalities regarding the pathophysiology of TRP channel proteins.

0

Electronic textiles (E-textiles) have been an area of intense industrial and academic research for years due to their advanced applications. Thus, the goal of this study was to develop highly conductive silk fibroin electrochromic nanofibers for use in E-textiles. The silk nanofibers were prepared by an electrospinning technique, and the conductive polyaniline (PANI) was added to impart the electrical conductivity and electroactive property to the resultant electrospun silk composite nanofibers. The experimental results showed that tuning the electrospinning procedure could control the morphology of the composite nanofibers, thus altering their mechanical properties and surface wettability. Furthermore, the developed PANI/silk composite fibers possess electroactive and electrochromic properties, such as adjusting the applied voltage. The developed strategy demonstrated the feasibility of incorporating not only electrical functionality but also electroactivity into sustainable silk nanofibers using electrospinning technique.

0

In 2018, about 2.1 million women have been diagnosed with breast cancer worldwide. Treatments include-among others-surgery, chemotherapy, radiotherapy, or endocrine therapy. The current policy of care tends rather at therapeutic de-escalation, and systemic treatment such as chemotherapies alone are not systematically considered as the best option anymore. With recent advances in the understanding of cancer biology, and as a complement to anatomic staging, some biological factors (assessed notably via gene-expression signatures) are taken into account to evaluate the benefit of a chemotherapy regimen. The first aim of this review will be to summarize when chemotherapies can be avoided or used only combined with other treatments. The second aim will focus on molecules that can be used instead of chemotherapeutic drugs or used in combination with chemotherapeutic drugs to improve treatment outcomes. These therapeutic molecules have emerged from the collaboration between fundamental and clinical research, and include molecules, such as tyrosine kinase inhibitors, CDK4/6 inhibitors, and monoclonal antibodies (such as anti-PD-L1). In the fight against cancer, new tools aiding decision making are of the utmost importance: gene-expression signatures have proven to be valuable in the clinic, notably, to know when chemotherapies can be avoided. When substitution treatments are also available, a big step can be made toward personalized medicine for the patient’s benefit.

0

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which senses environmental, dietary or metabolic signals to mount a transcriptional response, vital in health and disease. As environmental stimuli and metabolic products have been shown to impact the central nervous system (CNS), a burgeoning area of research has been on the role of the AHR in ocular and non-ocular neurodegenerative diseases. Herein, we summarize our current knowledge, of AHR-controlled cellular processes and their impact on regulating pathobiology of select ocular and neurodegenerative diseases. We catalogue animal models generated to study the role of the AHR in tissue homeostasis and disease pathogenesis. Finally, we discuss the potential of targeting the AHR pathway as a therapeutic strategy, in the context of the maladies of the eye and brain.

0

High-quality all-carbon nanostructure graphdiyne (GDY) saturable absorber was successfully fabricated and saturable absorption properties in the 2 μm region were characterized using a commercial mode-locked laser as a pulsed source. The fabricated GDY was first used as an optical switcher in a passively Q-switched Ho laser. Under absorbed pump power of 2.4 W, the maximum average output power and shortest pulse width were 443 mW and 1.38 µs, at a repetition rate of 29.72 kHz. The results suggest that GDY nanomaterial is a promising candidate as an optical modulator for generation of short pulses in Ho-doped lasers at 2.1 μm.