SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: ZooKeys

239

A taxonomic description of all castes of Colobopsis explodens Laciny & Zettel, sp. n. from Borneo, Thailand, and Malaysia is provided, which serves as a model species for biological studies on “exploding ants” in Southeast Asia. The new species is a member of the Colobopsis cylindrica (COCY) group and falls into a species complex that has been repeatedly summarized under the name Colobopsis saundersi (Emery, 1889) (formerly Camponotus saundersi). The COCY species group is known under its vernacular name “exploding ants” for a unique behaviour: during territorial combat, workers of some species sacrifice themselves by rupturing their gaster and releasing sticky and irritant contents of their hypertrophied mandibular gland reservoirs to kill or repel rivals. This study includes first illustrations and morphometric characterizations of males of the COCY group: Colobopsis explodens Laciny & Zettel, sp. n. and Colobopsis badia (Smith, 1857). Characters of male genitalia and external morphology are compared with other selected taxa of Camponotini. Preliminary notes on the biology of C. explodens Laciny & Zettel, sp. n. are provided. To fix the species identity of the closely related C. badia, a lectotype from Singapore is designated. The following taxonomic changes within the C. saundersi complex are proposed: Colobopsis solenobia (Menozzi, 1926), syn. n. and Colobopsis trieterica (Menozzi, 1926), syn. n. are synonymized with Colobopsis corallina Roger, 1863, a common endemic species of the Philippines. Colobopsis saginata Stitz, 1925, stat. n., hitherto a subspecies of C. badia, is raised to species level.

112

During a recent expedition to St. Paul’s Rocks, Atlantic Ocean, a distinctive and previously unknown species of Anthiadinae was collected at a depth of 120 m. A genetic analysis indicated the undescribed species is a member of the genus Tosanoides, which was only known to occur in the Pacific Ocean. This new taxon is distinguishable from all other Tosanoides species by the following combination of characters: soft dorsal fin rays 15-16; anal fin rays 9; ventral scale rows 9-10; last dorsal spine the longest (instead first through fourth). Here Tosanoidesaphroditesp. n. is described and illustrated, only known from St. Paul’s Rocks.

82

Further results are presented of the first field course at Maliau Basin, Malaysian Borneo organized by Taxon Expeditions, an organization which enables citizen scientists to be directly involved in taxonomic discoveries. Three new species of the aquatic beetle genus Grouvellinus Champion, 1923, namely G. leonardodicaprioisp. n., G. andrekuipersisp. n., and G. questsp. n. were collected jointly by the citizen scientists and taxonomists during the fieldwork in Maliau Basin. Material was mainly sampled from sandstone bottom rocks of blackwater streams at altitudes between 900 m and 1,000 m using fine-meshed hand-nets. The genus is widely distributed in the Oriental and Palearctic regions, but these are the first records from the island of Borneo.

80

For 130 years the diogenid genus Paguropsis Henderson, 1888 was considered monotypic for an unusual species, P. typica Henderson, 1888, described from the Philippines and seldom reported since. Although scantly studied, this species is known to live in striking symbiosis with a colonial sea anemone that the hermit can stretch back and forth like a blanket over its cephalic shield and part of cephalothoracic appendages, and thus the common name “blanket-crab”. During a study of paguroid collections obtained during recent French-sponsored biodiversity campaigns in the Indo-West Pacific, numerous specimens assignable to Paguropsis were encountered. Analysis and comparison with types and other historical specimens deposited in various museums revealed the existence of five undescribed species. Discovery of these new species, together with the observation of anatomical characters previously undocumented or poorly described, including coloration, required a revision of the genus Paguropsis. The name Chlaenopagurus andersoni Alcock & McArdle, 1901, considered by Alcock (1905) a junior synonym of P. typica, proved to be a valid species and is resurrected as P. andersoni (Alcock, 1899). In two of the new species, the shape of the gills, length/width of exopod of maxilliped 3, width and shape of sternite XI (of pereopods 3), and armature of the dactyls and fixed fingers of the chelate pereopods 4, were found to be characters so markedly different from P. typica and other species discovered that a new genus for them, Paguropsinagen. n., is justified. As result, the genus Paguropsis is found to contain five species: P. typica, P. andersoni, P. confusasp. n., P. gigassp. n., and P. laciniasp. n. Herein, Paguropsinagen. n., is proposed and diagnosed for two new species, P. pistillatagen. et sp. n., and P. inermisgen. et sp. n.; Paguropsis is redefined, P. typica and its previously believed junior synonym, P. andersoni, are redescribed. All species are illustrated, and color photographs provided. Also included are a summary of the biogeography of the two genera and all species; remarks on the significance of the unusual morphology; and remarks on knowledge of the symbiotic anemones used by the species. To complement the morphological descriptions and assist in future population and phylogenetic investigations, molecular data for mitochondrial COI barcode region and partial sequences of 12S and 16S rRNA are reported. A preliminary phylogenetic analysis using molecular data distinctly shows support for the separation of the species into two clades, one with all five species of Paguropsis, and another with the two species Paguropsinagen. n.

64

A molecular phylogeny of the Neotropical snail-eating snakes (tribe Dipsadini) is presented including 43 (24 for the first time) of the 77 species, sampled for both nuclear and mitochondrial genes. Morphological and phylogenetic support was found for four new species of Dipsas and one of Sibon, which are described here based on their unique combination of molecular, meristic, and color pattern characteristics. Sibynomorphus is designated as a junior subjective synonym of Dipsas. Dipsas latifrontalis and D. palmeri are resurrected from the synonymy of D. peruana. Dipsas latifasciata is transferred from the synonymy of D. peruana to the synonymy of D. palmeri. A new name, D. jamespetersi, is erected for the taxon currently known as Sibynomorphus petersi. Re-descriptions of D. latifrontalis and D. peruana are presented, as well as the first photographic voucher of an adult specimen of D. latifrontalis, along with photographs of all known Ecuadorian Dipsadini species. The first country record of D. variegata in Ecuador is provided and D. oligozonata removed from the list of Peruvian herpetofauna. With these changes, the number of Dipsadini reported in Ecuador increases to 22, 18 species of Dipsas and four of Sibon.

58

Pristimantis is the most diverse genus of tetrapods comprising 532 described species. It contains a large number of morphologically cryptic species that are being discovered with the assistance of genetic evidence. We use molecular, morphological, bioacoustic, and environmental data to assess the phylogenetic relationships and determine the species within an Andean clade of Pristimantis, which is distributed from central Ecuador to northern Peru. We assign to this clade the name Huicundomantis and propose it as a subgenus. Our results show that Huicundomantis is composed of two large clades which we name as the P. phoxocephalus species group and the P. cryptomelas species group. Huicundomantis is composed of 28 species of which 12 have been described and 16 are new. We describe 11 of these undescribed species. The most effective characters to discriminate among species are DNA sequences, qualitative morphology, and advertisement calls. Morphometric and environmental characters are not very useful to define species limits. We clarify the identity of P. riveti and show that populations from southern Ecuador traditionally ascribed to P. riveti are a new species, P. lutzaesp. nov. We also show that P. prometeii is a junior synonym of P. hampatusami. The current diversity and geographic distribution of Huicundomantis are consistent with a model of allopatric speciation. All species have a restricted distribution range (less than 4330 km2) and are assigned to the Red List categories Data Deficient or threatened with extinction. We provide new reasons to increase conservation efforts for these species and their habitat. Taking our results into account, Pristimantis species richness in Ecuador increases from 211 to 221 species, and the number of species endemic to Ecuador from 119 to 129.

50

Two new species of palaemonid shrimp associated with ascidian hosts, Odontonia bagginsisp. n. from Tidore and Odontonia plurellicolasp. n., from Ternate, Indonesia are described and figured. Through phylogenetic analyses based on both morphological and molecular datasets (mitochondrial Cytochrome c oxidase subunit I gene and the 16S mitochondrial ribosomal gene) of the genus Odontonia, the phylogenetic positions of the new species have been reconstructed. Scanning Electron Microscopy has been used to observe additional characters on dactyli of the ambulatory pereiopods. Odontonia plurellicolasp. n. appears to be more closely related to O. simplicipes and O. seychellensis, but it differs most notably in the morphology of the rostrum and mouthparts. Odontonia plurellicolasp. n. appears to be the only Odontonia species living inside a phlebobranch ascidian Plurella sp. Odontonia bagginsisp. n. is closely related to O. sibogae, but differs markedly in the abundance of setae on the propodi of the ambulatory pereiopods. In the present paper, O. maldivensis Fransen, 2006 is regarded as a junior synonym of O. rufopunctata Fransen, 2002 based on both morphological and molecular aspects.

37

A new species of Pristimantis is described from the highland paramos on the eastern slopes of the Cajas Massif, southern Andes of Ecuador, at 3400 m. This new species is characterized by having a distinctive reddish color, cutaneous macroglands in suprascapular region and surfaces of arm and legs, and by lacking dentigerous processes of vomers. The cutaneous macroglands are similar to those exhibited by several species of the Pristimantis orcesi group, and may suggest a close phylogenetic relationship. The new species could be a latitudinal substitution of Pristimantis orcesi in the southern Andes of Ecuador.

35

The taxonomy, biology, and population status of flying foxes (Pteropus spp.) remain little investigated in the Caroline Islands, Micronesia, where multiple endemic taxa occur. Our study evaluated the taxonomic relationships between the flying foxes of the Mortlock Islands (a subgroup of the Carolines) and two closely related taxa from elsewhere in the region, and involved the first ever field study of the Mortlock population. Through a review of historical literature, the name Pteropus pelagicus Kittlitz, 1836 is resurrected to replace the prevailing but younger name Pteropus phaeocephalus Thomas, 1882 for the flying fox of the Mortlocks. On the basis of cranial and external morphological comparisons, Pteropus pelagicus is united taxonomically with Pteropus insularis “Hombron and Jacquinot, 1842” (with authority herein emended to Jacquinot and Pucheran 1853), and the two formerly monotypic species are now treated as subspecies - Pteropus pelagicus pelagicus in the Mortlocks, and Pteropus phaeocephalus insularis on the islands of Chuuk Lagoon and Namonuito Atoll. The closest relative of Pteropus pelagicus is Pteropus tokudae Tate, 1934, of Guam, which is best regarded as a distinct species. Pteropus pelagicus pelagicus is the only known resident bat in the Mortlock Islands, a chain of more than 100 atoll islands with a total land area of <12 km(2). Based on field observations in 2004, we estimated a population size of 925-1,200 bats, most of which occurred on Satawan and Lukunor Atolls, the two largest and southernmost atolls in the chain. Bats were absent on Nama Island and possibly extirpated from Losap Atoll in the northern Mortlocks. Resident Mortlockese indicated bats were more common in the past, but that the population generally has remained stable in recent years. Most Pteropus phaeocephalus pelagicus roosted alone or in groups of 5-10 bats; a roost of 27 was the largest noted. Diet is comprised of at least eight plant species, with breadfruit (Artocarpus spp.) being a preferred food. Records of females with young (April, July) and pregnant females (July) suggest an extended breeding season. Pteropus pelagicus pelagicus appears most threatened by the prospect of sea level rise associated with global climate change, which has the potential to submerge or reduce the size of atolls in the Mortlocks. Occasional severe typhoons probably temporarily reduce populations on heavily damaged atolls, but hunting and ongoing habitat loss are not current problems for the subspecies.

Concepts: Caroline Islands, Atoll, Pteropus, Federated States of Micronesia, Chuuk, Namonuito Atoll, Yap, Pohnpei

33

Iberoporusplutosp. n., the first stygobiont beetle from Portugal (Dytiscidae, Hydroporinae), is described from a single female from the cave Soprador do Carvalho (Coimbra). The species is highly troglomorphic, depigmented, blind, and with elongated appendages not adapted for swimming. A molecular phylogeny based on a combination of three mitochondrial and two nuclear genes showed the new species to be sister to I.cermenius Castro & Delgado, 2001 from Córdoba (south of Spain), within the subtribe Siettitiina of the tribe Hydroporini. Both species are included in a clade with Siettitiaavenionensis Guignot, 1925 (south of France) and Rhithrodytesagnus Foster, 1992 and R.argaensis Fery & Bilton, 1996 (north of Portugal), in turn sister to the rest of species of genus Rhithrodytes Bameul, 1989, in what is here considered the Siettitia group of genera. We resolve the paraphyly of Rhithrodytes by transferring the two Portuguese species to Iberoporus Castro & Delgado, 2001, I.agnus (Foster, 1992), comb. n. and I.argaensis (Fery & Bilton, 1996), comb. n.