SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: ZooKeys

234

A taxonomic description of all castes of Colobopsis explodens Laciny & Zettel, sp. n. from Borneo, Thailand, and Malaysia is provided, which serves as a model species for biological studies on “exploding ants” in Southeast Asia. The new species is a member of the Colobopsis cylindrica (COCY) group and falls into a species complex that has been repeatedly summarized under the name Colobopsis saundersi (Emery, 1889) (formerly Camponotus saundersi). The COCY species group is known under its vernacular name “exploding ants” for a unique behaviour: during territorial combat, workers of some species sacrifice themselves by rupturing their gaster and releasing sticky and irritant contents of their hypertrophied mandibular gland reservoirs to kill or repel rivals. This study includes first illustrations and morphometric characterizations of males of the COCY group: Colobopsis explodens Laciny & Zettel, sp. n. and Colobopsis badia (Smith, 1857). Characters of male genitalia and external morphology are compared with other selected taxa of Camponotini. Preliminary notes on the biology of C. explodens Laciny & Zettel, sp. n. are provided. To fix the species identity of the closely related C. badia, a lectotype from Singapore is designated. The following taxonomic changes within the C. saundersi complex are proposed: Colobopsis solenobia (Menozzi, 1926), syn. n. and Colobopsis trieterica (Menozzi, 1926), syn. n. are synonymized with Colobopsis corallina Roger, 1863, a common endemic species of the Philippines. Colobopsis saginata Stitz, 1925, stat. n., hitherto a subspecies of C. badia, is raised to species level.

107

During a recent expedition to St. Paul’s Rocks, Atlantic Ocean, a distinctive and previously unknown species of Anthiadinae was collected at a depth of 120 m. A genetic analysis indicated the undescribed species is a member of the genus Tosanoides, which was only known to occur in the Pacific Ocean. This new taxon is distinguishable from all other Tosanoides species by the following combination of characters: soft dorsal fin rays 15-16; anal fin rays 9; ventral scale rows 9-10; last dorsal spine the longest (instead first through fourth). Here Tosanoidesaphroditesp. n. is described and illustrated, only known from St. Paul’s Rocks.

84

Further results are presented of the first field course at Maliau Basin, Malaysian Borneo organized by Taxon Expeditions, an organization which enables citizen scientists to be directly involved in taxonomic discoveries. Three new species of the aquatic beetle genus Grouvellinus Champion, 1923, namely G. leonardodicaprioisp. n., G. andrekuipersisp. n., and G. questsp. n. were collected jointly by the citizen scientists and taxonomists during the fieldwork in Maliau Basin. Material was mainly sampled from sandstone bottom rocks of blackwater streams at altitudes between 900 m and 1,000 m using fine-meshed hand-nets. The genus is widely distributed in the Oriental and Palearctic regions, but these are the first records from the island of Borneo.

80

For 130 years the diogenid genus Paguropsis Henderson, 1888 was considered monotypic for an unusual species, P. typica Henderson, 1888, described from the Philippines and seldom reported since. Although scantly studied, this species is known to live in striking symbiosis with a colonial sea anemone that the hermit can stretch back and forth like a blanket over its cephalic shield and part of cephalothoracic appendages, and thus the common name “blanket-crab”. During a study of paguroid collections obtained during recent French-sponsored biodiversity campaigns in the Indo-West Pacific, numerous specimens assignable to Paguropsis were encountered. Analysis and comparison with types and other historical specimens deposited in various museums revealed the existence of five undescribed species. Discovery of these new species, together with the observation of anatomical characters previously undocumented or poorly described, including coloration, required a revision of the genus Paguropsis. The name Chlaenopagurus andersoni Alcock & McArdle, 1901, considered by Alcock (1905) a junior synonym of P. typica, proved to be a valid species and is resurrected as P. andersoni (Alcock, 1899). In two of the new species, the shape of the gills, length/width of exopod of maxilliped 3, width and shape of sternite XI (of pereopods 3), and armature of the dactyls and fixed fingers of the chelate pereopods 4, were found to be characters so markedly different from P. typica and other species discovered that a new genus for them, Paguropsinagen. n., is justified. As result, the genus Paguropsis is found to contain five species: P. typica, P. andersoni, P. confusasp. n., P. gigassp. n., and P. laciniasp. n. Herein, Paguropsinagen. n., is proposed and diagnosed for two new species, P. pistillatagen. et sp. n., and P. inermisgen. et sp. n.; Paguropsis is redefined, P. typica and its previously believed junior synonym, P. andersoni, are redescribed. All species are illustrated, and color photographs provided. Also included are a summary of the biogeography of the two genera and all species; remarks on the significance of the unusual morphology; and remarks on knowledge of the symbiotic anemones used by the species. To complement the morphological descriptions and assist in future population and phylogenetic investigations, molecular data for mitochondrial COI barcode region and partial sequences of 12S and 16S rRNA are reported. A preliminary phylogenetic analysis using molecular data distinctly shows support for the separation of the species into two clades, one with all five species of Paguropsis, and another with the two species Paguropsinagen. n.

64

A molecular phylogeny of the Neotropical snail-eating snakes (tribe Dipsadini) is presented including 43 (24 for the first time) of the 77 species, sampled for both nuclear and mitochondrial genes. Morphological and phylogenetic support was found for four new species of Dipsas and one of Sibon, which are described here based on their unique combination of molecular, meristic, and color pattern characteristics. Sibynomorphus is designated as a junior subjective synonym of Dipsas. Dipsas latifrontalis and D. palmeri are resurrected from the synonymy of D. peruana. Dipsas latifasciata is transferred from the synonymy of D. peruana to the synonymy of D. palmeri. A new name, D. jamespetersi, is erected for the taxon currently known as Sibynomorphus petersi. Re-descriptions of D. latifrontalis and D. peruana are presented, as well as the first photographic voucher of an adult specimen of D. latifrontalis, along with photographs of all known Ecuadorian Dipsadini species. The first country record of D. variegata in Ecuador is provided and D. oligozonata removed from the list of Peruvian herpetofauna. With these changes, the number of Dipsadini reported in Ecuador increases to 22, 18 species of Dipsas and four of Sibon.

49

Two new species of palaemonid shrimp associated with ascidian hosts, Odontonia bagginsisp. n. from Tidore and Odontonia plurellicolasp. n., from Ternate, Indonesia are described and figured. Through phylogenetic analyses based on both morphological and molecular datasets (mitochondrial Cytochrome c oxidase subunit I gene and the 16S mitochondrial ribosomal gene) of the genus Odontonia, the phylogenetic positions of the new species have been reconstructed. Scanning Electron Microscopy has been used to observe additional characters on dactyli of the ambulatory pereiopods. Odontonia plurellicolasp. n. appears to be more closely related to O. simplicipes and O. seychellensis, but it differs most notably in the morphology of the rostrum and mouthparts. Odontonia plurellicolasp. n. appears to be the only Odontonia species living inside a phlebobranch ascidian Plurella sp. Odontonia bagginsisp. n. is closely related to O. sibogae, but differs markedly in the abundance of setae on the propodi of the ambulatory pereiopods. In the present paper, O. maldivensis Fransen, 2006 is regarded as a junior synonym of O. rufopunctata Fransen, 2002 based on both morphological and molecular aspects.

39

A new species of Pristimantis is described from the highland paramos on the eastern slopes of the Cajas Massif, southern Andes of Ecuador, at 3400 m. This new species is characterized by having a distinctive reddish color, cutaneous macroglands in suprascapular region and surfaces of arm and legs, and by lacking dentigerous processes of vomers. The cutaneous macroglands are similar to those exhibited by several species of the Pristimantis orcesi group, and may suggest a close phylogenetic relationship. The new species could be a latitudinal substitution of Pristimantis orcesi in the southern Andes of Ecuador.

35

The taxonomy, biology, and population status of flying foxes (Pteropus spp.) remain little investigated in the Caroline Islands, Micronesia, where multiple endemic taxa occur. Our study evaluated the taxonomic relationships between the flying foxes of the Mortlock Islands (a subgroup of the Carolines) and two closely related taxa from elsewhere in the region, and involved the first ever field study of the Mortlock population. Through a review of historical literature, the name Pteropus pelagicus Kittlitz, 1836 is resurrected to replace the prevailing but younger name Pteropus phaeocephalus Thomas, 1882 for the flying fox of the Mortlocks. On the basis of cranial and external morphological comparisons, Pteropus pelagicus is united taxonomically with Pteropus insularis “Hombron and Jacquinot, 1842” (with authority herein emended to Jacquinot and Pucheran 1853), and the two formerly monotypic species are now treated as subspecies - Pteropus pelagicus pelagicus in the Mortlocks, and Pteropus phaeocephalus insularis on the islands of Chuuk Lagoon and Namonuito Atoll. The closest relative of Pteropus pelagicus is Pteropus tokudae Tate, 1934, of Guam, which is best regarded as a distinct species. Pteropus pelagicus pelagicus is the only known resident bat in the Mortlock Islands, a chain of more than 100 atoll islands with a total land area of <12 km(2). Based on field observations in 2004, we estimated a population size of 925-1,200 bats, most of which occurred on Satawan and Lukunor Atolls, the two largest and southernmost atolls in the chain. Bats were absent on Nama Island and possibly extirpated from Losap Atoll in the northern Mortlocks. Resident Mortlockese indicated bats were more common in the past, but that the population generally has remained stable in recent years. Most Pteropus phaeocephalus pelagicus roosted alone or in groups of 5-10 bats; a roost of 27 was the largest noted. Diet is comprised of at least eight plant species, with breadfruit (Artocarpus spp.) being a preferred food. Records of females with young (April, July) and pregnant females (July) suggest an extended breeding season. Pteropus pelagicus pelagicus appears most threatened by the prospect of sea level rise associated with global climate change, which has the potential to submerge or reduce the size of atolls in the Mortlocks. Occasional severe typhoons probably temporarily reduce populations on heavily damaged atolls, but hunting and ongoing habitat loss are not current problems for the subspecies.

Concepts: Caroline Islands, Atoll, Pteropus, Federated States of Micronesia, Chuuk, Namonuito Atoll, Yap, Pohnpei

32

Herein, the cleptoparasitic (cuckoo) bee genus Epeolus (Hymenoptera: Apidae) is revised for species occurring in North America, north of Mexico, and an updated checklist of all species known to occur in Canada and the United States of America is provided with comprehensive descriptions, diagnoses, and a single dichotomous key (using the same couplets for both sexes) to aid in their identification. To increase their recognition among North American naturalists, English common names are also proposed for all North American Epeolus. A total of 43 species is confirmed as present in the region, 15 of which are newly recognized. The following new species are proposed based on unique morphological (and in most cases also molecular) attributes: E. andriyisp. n., E. attenboroughisp. n., E. axillarissp. n., E. basilisp. n., E. brumleyisp. n., E. chamaesarachaesp. n., E. deyrupisp. n., E. diadematussp. n., E. ferrariisp. n., E. gibbsisp. n., E. inornatussp. n., E. nebulosussp. n., E. packerisp. n., E. splendidussp. n., and E. tessierissp. n. Of the 15, six (E. axillaris, E. brumleyi, E. chamaesarachae, E. diadematus, E. splendidus, and E. tessieris) were identified as new species under different names (nomina nuda) in an M.Sc. thesis by Richard L. Brumley in 1965, but until now they have not been formally described. Detailed morphological comparisons with some evidence from DNA barcoding support the following synonymies, one of which C was first proposed by Brumley (1965): a) E. melectimimus Cockerell and Sandhouse, syn. n., under E. asperatus Cockerell; b) E. crucis Cockerell, syn. n., under E. compactus Cresson; c) E. mesillae palmarum Linsley, syn. n., under E. mesillae (Cockerell); and d) E. weemsi Mitchell, syn. n., and e) E. vernalis Mitchell, syn. n., under E. ilicis Mitchell. Only one member of the almost entirely Neotropical “Trophocleptria group” (Epeolus bifasciatus Cresson) is confirmed as occurring north of Mexico, and is widespread East of the Rocky Mountains. Known floral associations are indicated for each species, as are suspected or known host species of Colletes Latreille. Evidence is presented that suggests further investigation into the possible synonymy of Colletes wickhami Timberlake under C. scopiventer Swenk is warranted.

29

Exosphaeromaamplicauda (Stimpson, 1857) from the west coast of North America is reviewed and redescribed and revealed to be a group of closely related species. A neotype is designated and the species redescribed based on the neotype and topotypic specimens. Exosphaeromaamplicauda is known only from the coast of California, at Marin, Sonoma and San Mateo Counties. Exosphaeromaaphrodita (Boone, 1923), type locality La Jolla, California and previously considered nomen dubium is taken out of synonymy and re-validated. A further three species: Exosphaeromapaydenae sp. n., Exosphaeromarussellhansoni sp. n., and Exosphaeromapentcheffi sp. n. are described herein. Sphaeromaoctonctum Richardson, 1899 is placed into junior synonymy with Exosphaeromaamplicauda. A key to the Pacific West Coast Exosphaeroma is provided.

Concepts: United States, California, North America, Los Angeles, San Diego, Zoological nomenclature, San Francisco, Nomen dubium