SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Viruses

20

Myxoma virus (MYXV) is the type species of the Leporipoxviruses, a genus of Chordopoxvirinae, double stranded DNA viruses, whose members infect leporids and squirrels, inducing cutaneous fibromas from which virus is mechanically transmitted by biting arthropods. However, in the European rabbit (Oryctolagus cuniculus), MYXV causes the lethal disease myxomatosis. The release of MYXV as a biological control for the wild European rabbit population in Australia, initiated one of the great experiments in evolution. The subsequent coevolution of MYXV and rabbits is a classic example of natural selection acting on virulence as a pathogen adapts to a novel host species. Slightly attenuated mutants of the progenitor virus were more readily transmitted by the mosquito vector because the infected rabbit survived longer, while highly attenuated viruses could be controlled by the rabbit immune response. As a consequence, moderately attenuated viruses came to dominate. This evolution of the virus was accompanied by selection for genetic resistance in the wild rabbit population, which may have created an ongoing co-evolutionary dynamic between resistance and virulence for efficient transmission. This natural experiment was repeated on a continental scale with the release of a separate strain of MYXV in France and its subsequent spread throughout Europe. The selection of attenuated strains of virus and resistant rabbits mirrored the experience in Australia in a very different environment, albeit with somewhat different rates. Genome sequencing of the progenitor virus and the early radiation, as well as those from the 1990s in Australia and Europe, has shown that although MYXV evolved at high rates there was no conserved route to attenuation or back to virulence. In contrast, it seems that these relatively large viral genomes have the flexibility for multiple pathways that converge on a similar phenotype.

Concepts: Genetics, Genome, Virus, European Rabbit, Rabbit, Gene, Evolution, DNA

16

There is an epidemic of obesity starting about 1980 in both developed and undeveloped countries definitely associated with multiple etiologies. About 670 million people worldwide are obese. The incidence of obesity has increased in all age groups, including children. Obesity causes numerous diseases and the interaction between genetic, metabolic, social, cultural and environmental factors are possible cofactors for the development of obesity. Evidence emerging over the last 20 years supports the hypothesis that viral infections may be associated with obesity in animals and humans. The most widely studied infectious agent possibly linked to obesity is adenovirus 36 (Adv36). Adv36 causes obesity in animals. In humans, Adv36 associates with obesity both in adults and children and the prevalence of Adv36 increases in relation to the body mass index. In vivo and in vitro studies have shown that the viral E4orf1 protein (early region 4 open reading frame 1, Adv) mediates the Adv36 effect including its adipogenic potential. The Adv36 infection should therefore be considered as a possible risk factor for obesity and could be a potential new therapeutic target in addition to an original way to understand the worldwide rise of the epidemic of obesity. Here, the data indicating a possible link between viral infection and obesity with a particular emphasis to the Adv36 will be reviewed.

Concepts: Bacteria, Body mass index, Virus, Inflammation, Disease, Infection, Obesity, Infectious disease

14

Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections.

Concepts: Pandemic, Antiviral drug, Avian influenza, Transmission and infection of H5N1, 2009 flu pandemic, Influenza pandemic, Virus, Influenza

12

The English sweating sickness caused five devastating epidemics between 1485 and 1551, England was hit hardest, but on one occasion also mainland Europe, with mortality rates between 30% and 50%. The Picardy sweat emerged about 150 years after the English sweat disappeared, in 1718, in France. It caused 196 localized outbreaks and apparently in its turn disappeared in 1861. Both diseases have been the subject of numerous attempts to define their origin, but so far all efforts were in vain. Although both diseases occurred in different time frames and were geographically not overlapping, a common denominator could be what we know today as hantavirus infections. This review aims to shed light on the characteristics of both diseases from contemporary as well as current knowledge and suggests hantavirus infection as the most likely cause for the English sweating sickness as well as for the Picardy sweat.

Concepts: Infectious disease, Hantavirus

11

Extensive surveillance in bat populations in response to recent emerging diseases has revealed that this group of mammals acts as a reservoir for a large range of viruses. However, the oldest known association between a zoonotic virus and a bat is that between rabies virus and the vampire bat. Vampire bats are only found in Latin America and their unique method of obtaining nutrition, blood-feeding or haematophagy, has only evolved in the New World. The adaptations that enable blood-feeding also make the vampire bat highly effective at transmitting rabies virus. Whether the virus was present in pre-Columbian America or was introduced is much disputed, however, the introduction of Old World livestock and associated landscape modification, which continues to the present day, has enabled vampire bat populations to increase. This in turn has provided the conditions for rabies re-emergence to threaten both livestock and human populations as vampire bats target large mammals. This review considers the ecology of the vampire bat that make it such an efficient vector for rabies, the current status of vampire-transmitted rabies and the future prospects for spread by this virus and its control.

Concepts: Present, Indigenous peoples of the Americas, Rabies, Americas, Evolution, Future, Bat, Vampire

10

After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.

Concepts: Virus, Poxviridae, Vaccinia, DNA, Edward Jenner, Cowpox, Vaccination, Smallpox

9

We review various existing models of hepatitis C virus (HCV) infection and show that there are inconsistencies between the models and known behaviour of the infection. A new model for HCV infection is proposed, based on various dynamical processes that occur during the infection that are described in the literature. This new model is analysed, and three steady state branches of solutions are found when there is no stem cell generation of hepatocytes. Unusually, the branch of infected solutions that connects the uninfected branch and the pure infection branch can be found analytically and always includes a limit point, subject to a few conditions on the parameters. When the action of stem cells is included, the bifurcation between the pure infection and infected branches unfolds, leaving a single branch of infected solutions. It is shown that this model can generate various viral load profiles that have been described in the literature, which is confirmed by fitting the model to four viral load datasets. Suggestions for possible changes in treatment are made based on the model.

Concepts: Attractor, Mushroom Records, Cytomegalovirus, Cell biology, Stem cell, Hepatitis B, Hepatitis C virus, Hepatitis C

8

The Second Annual Meeting of the European Virus Bioinformatics Center (EVBC), held in Utrecht, Netherlands, focused on computational approaches in virology, with topics including (but not limited to) virus discovery, diagnostics, (meta-)genomics, modeling, epidemiology, molecular structure, evolution, and viral ecology. The goals of the Second Annual Meeting were threefold: (i) to bring together virologists and bioinformaticians from across the academic, industrial, professional, and training sectors to share best practice; (ii) to provide a meaningful and interactive scientific environment to promote discussion and collaboration between students, postdoctoral fellows, and both new and established investigators; (iii) to inspire and suggest new research directions and questions. Approximately 120 researchers from around the world attended the Second Annual Meeting of the EVBC this year, including 15 renowned international speakers. This report presents an overview of new developments and novel research findings that emerged during the meeting.

8

Single-cell genomics has unveiled the metabolic potential of dominant microbes inhabiting different environments, including the human body. The lack of genomic information for predominant microbes of the human body, such as bacteriophages, hinders our ability to answer fundamental questions about our viral communities. Here, we applied single-virus genomics (SVGs) to natural human salivary samples in combination with viral metagenomics to gain some insights into the viral community structure of the oral cavity. Saliva samples were processed for viral metagenomics (n= 15) and SVGs (n= 3). A total of 1328 uncultured single viruses were sorted by fluorescence-activated virus sorting followed by whole genome amplification. Sequencing of 24 viral single amplified genomes (vSAGs) showed that half of the vSAGs contained viral hallmark genes. Among those bona fide viruses, the uncultured single virus 92-C13 putatively infecting oral Streptococcus-like species was within the top ≈10 most abundant viruses in the oral virome. Viral gene network and viral metagenomics analyses of 439 oral viruses from cultures, metagenomics, and SVGs revealed that salivary viruses were tentatively structured into ≈200 major viral clusters, corresponding to approximately genus-level groupings. Data showed that none of the publicly available viral isolates, excepting an Actinomyces phage, were significantly abundant in the oral viromes. In addition, none of the obtained viral contigs and vSAGs from this study were present in all viromes. Overall, the data demonstrates that most viral isolates are not naturally abundant in saliva, and furthermore, the predominant viruses in the oral cavity are yet uncharacterized. Results suggest a variable, complex, and interpersonal viral profile. Finally, we demonstrated the power of SVGs in combination with viral metagenomics to unveil the genetic information of the uncultured viruses of the human virome.

Concepts: Microbiology, Genomics, Bacteria, DNA, Genetics, Virus, Gene, Genome

8

Viruses were recognized as the causative agents of fish diseases, such as infectious pancreatic necrosis and Oregon sockeye disease, in the early 1960s [1], and have since been shown to be responsible for diseases in all marine life from bacteria to protists, mollusks, crustaceans, fish and mammals [2].[…].

Concepts: Bacteria, Life, Organism, Infectious disease, Animal, Death, Marine biology, Infection