SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Translational stroke research

43

Over 700 drugs have failed in stroke clinical trials, an unprecedented rate thought to be attributed in part to limited and isolated testing often solely in “young” rodent models and focusing on a single secondary injury mechanism. Here, extracellular vesicles (EVs), nanometer-sized cell signaling particles, were tested in a mouse thromboembolic (TE) stroke model. Neural stem cell (NSC) and mesenchymal stem cell (MSC) EVs derived from the same pluripotent stem cell (PSC) line were evaluated for changes in infarct volume as well as sensorimotor function. NSC EVs improved cellular, tissue, and functional outcomes in middle-aged rodents, whereas MSC EVs were less effective. Acute differences in lesion volume following NSC EV treatment were corroborated by MRI in 18-month-old aged rodents. NSC EV treatment has a positive effect on motor function in the aged rodent as indicated by beam walk, instances of foot faults, and strength evaluated by hanging wire test. Increased time with a novel object also indicated that NSC EVs improved episodic memory formation in the rodent. The therapeutic effect of NSC EVs appears to be mediated by altering the systemic immune response. These data strongly support further preclinical development of a NSC EV-based stroke therapy and warrant their testing in combination with FDA-approved stroke therapies.

Concepts: Immune system, Stem cell, Mesenchymal stem cell, Bone marrow, Stem cells, Cell biology, Memory, Mouse

8

The COVID-19 pandemic is associated with neurological symptoms and complications including stroke. There is hypercoagulability associated with COVID-19 that is likely a “sepsis-induced coagulopathy” and may predispose to stroke. The SARS-CoV-2 virus binds to angiotensin-converting enzyme 2 (ACE2) present on brain endothelial and smooth muscle cells. ACE2 is a key part of the renin angiotensin system (RAS) and a counterbalance to angiotensin-converting enzyme 1 (ACE1) and angiotensin II. Angiotensin II is proinflammatory, is vasoconstrictive, and promotes organ damage. Depletion of ACE2 by SARS-CoV-2 may tip the balance in favor of the “harmful” ACE1/angiotensin II axis and promote tissue injury including stroke. There is a rationale to continue to treat with tissue plasminogen activator for COVID-19-related stroke and low molecular weight heparinoids may reduce thrombosis and mortality in sepsis-induced coagulopathy.

3

This study aimed to review available published reports concerning sudden unexpected postnatal collapse (SUPC) of apparently healthy infants within the first days of postnatal life, establish a structured presentation and delineate recommendations for preventive measures. All published reports of SUPC cases were retrospectively analyzed, and three not previously published SUPC cases at Karolinska University Hospital were detailed to exemplify the varying presentations and outcomes of SUPC. We found 398 published cases of SUPC occurring during first postnatal week. Estimated incidence of the SUPC of a presumably healthy infant after birth differs widely, ranging from 2.6 cases to 133 cases/100,000. However, definition, inclusion, and exclusion criteria vary substantially between reports. Our summary indicates that reported SUPC occurs more frequently than expected from recent surveys. About half of the infants die, and of the remaining survivors, half have neurological sequela. Of the 233 cases of sudden unexpected death described, no etiology was found in 153 cases. When a defined time for the SUPC event is described, approximately one third of reported events occur during the first 2 h, between 2 and 24 h and between 1 and 7 days after birth, respectively. Adequate education of caregivers and appropriate surveillance during the first days of newborns should enable us to save hundreds of lives.

Concepts: Childbirth, Infant, Definition, Infant mortality, Newborn

2

Active transport of microRNAs (miRNA) in extracellular vesicles (EV) occurs in disease. Circulating EV-packaged miRNAs in the serum of stroke patients were compared to stroke mimics with matched cardio- and cerebrovascular risk factors, with corroboration of results in a pre-clinical model. An unbiased miRNA microarray was performed in stroke vs. stroke mimic patients (n = 39). Results were validated (n = 173 patients) by real-time quantitative polymerase chain reaction. miRNA expression was quantified in total serum/EV (n = 5-7) of naïve adult spontaneously hypertensive stroke-prone rats (SHRSP), their normotensive reference strain (Wistar Kyoto, WKY) and in circulating EV (n = 3), peri-infarct brain (n = 6), or EV derived from this region (n = 3) in SHRSP following transient middle cerebral artery occlusion (tMCAO). Circulating EV concentration did not differ between stroke and stroke mimic patients. The microarray identified many altered EV-packaged miRNAs: levels of miRNA-17-5p, -20b-5p and -93-5p (miRNA-17 family members) and miRNA-27b-3p were significantly (p ≤ 0.05) increased in stroke vs. stroke mimic patients. Patients with small vessel disease (SVD) consistently had the highest miRNA levels. Circulating EV concentration was unaltered between naïve SHRSP and WKY but levels of miRNA-17-5p and -93-5p were significantly increased in SHRSP. tMCAO in SHRSP did not further alter circulating EV miRNA-17 family member expression and nor did it change total miRNA-17 family levels in peri-infarct brain tissue or in EV isolated from this region at 24 h post-tMCAO. Changes in EV packaged miRNA expression was validated in patients with stroke, particularly those with SVD and corroborated pre-clinically. Together, altered circulating EV levels of miRNA-17 family members may reflect the chronic sequelae underlying cerebrovascular SVD rather than the acute ischemic stroke itself.

2

Interleukin-1 receptor antagonist (IL-1 RA) is an anti-inflammatory protein used clinically to treat rheumatoid arthritis and is considered a promising candidate therapy for stroke. Here, we sought to update the existing systematic review and meta-analysis of IL-1 RA in models of ischaemic stroke, published in 2009, to assess efficacy, the range of circumstances in which efficacy has been tested and whether the data appear to be confounded due to reported study quality and publication bias. We included 25 sources of data, 11 of which were additional to the original review. Overall, IL-1 RA reduced infarct volume by 36.2 % (95 % confidence interval 31.6-40.7, n = 76 comparisons from 1283 animals). Assessments for publication bias suggest 30 theoretically missing studies which reduce efficacy to 21.9 % (17.3-26.4). Efficacy was higher where IL-1 RA was administered directly into the ventricles rather than peripherally, and studies not reporting allocation concealment during the induction of ischaemia reported larger treatment effects. The preclinical data supporting IL-1 RA as a candidate therapy for ischaemic stroke have improved. The reporting of measures to reduce the risk of bias has improved substantially in this update, and studies now include the use of animals with relevant co-morbidities.

Concepts: Stroke, Receptor, Rheumatoid arthritis, Receptor antagonist, Meta-analysis

1

Cerebral collateral circulation and age are critical factors in determining outcome from acute ischemic stroke. Aging may lead to rarefaction of cerebral collaterals, and thereby accelerate ischemic injury by reducing penumbral blood flow. Dynamic changes in pial collaterals after onset of cerebral ischemia may vary with age but have not been extensively studied. Here, laser speckle contrast imaging (LSCI) and two-photon laser scanning microscopy (TPLSM) were combined to monitor cerebral pial collaterals between the anterior cerebral artery (ACA) and the middle cerebral artery (MCA) in young adult and aged male Sprague Dawley rats during distal middle cerebral artery occlusion (dMCAo). Histological analysis showed that aged rats had significantly greater volumes of ischemic damage than young rats. LSCI showed that cerebral collateral perfusion declined over time after stroke in aged and young rats, and that this decline was significantly greater in aged rats. TPLSM demonstrated that pial arterioles narrowed faster after dMCAo in aged rats compared to young adult rats. Notably, while arteriole vessel narrowing was comparable 4.5 h after ischemic onset in aged and young adult rats, red blood cell velocity was stable in young adults but declined over time in aged rats. Overall, red blood cell flux through pial arterioles was significantly reduced at all time-points after 90 min post-dMCAo in aged rats relative to young adult rats. Thus, collateral failure is more severe in aged rats with significantly impaired pial collateral dynamics (reduced diameter, red blood cell velocity, and red blood cell flux) relative to young adult rats.

1

In acute stroke patients, penumbral tissue is non-functioning but potentially salvageable within a time window of variable duration and represents target tissue for rescue. Reperfusion by thrombolysis and/or thrombectomy can rescue penumbra and improve stroke outcomes, but these treatments are currently available to a minority of patients. In addition to the utility of Glasgow Oxygen Level Dependent (GOLD) as an MRI contrast capable of detecting penumbra, its constituent perfluorocarbon (PFC) oxygen carrier, combined with normobaric hyperoxia, also represents a potential acute stroke treatment through improved oxygen delivery to penumbra. Preclinical studies were designed to test the efficacy of an intravenous oxygen carrier, the perfluorocarbon emulsion Oxycyte® (O-PFC), combined with normobaric hyperoxia (50% O2) in both in vitro (neuronal cell culture) and in vivo rat models of ischaemic stroke. Outcome was assessed through the quantification of lipid peroxidation and oxidative stress levels, mortality, infarct volume, neurological scoring and sensorimotor tests of functional outcome in two in vivo models of stroke. Additionally, we investigated evidence for any positive or negative interactions with the thrombolytic recombinant tissue plasminogen activator (rt-PA) following embolus-induced stroke in rats. Treatment with intravenous O-PFC + normobaric hyperoxia (50% O2) provided evidence of reduced infarct size and improved functional recovery. It did not exacerbate oxidative stress and showed no adverse interactions with rt-PA. The positive results and lack of adverse effects support human trials of O-PFC + 50% O2 normobaric hyperoxia as a potential therapeutic approach. Combined with the diagnostic data presented in the preceding paper, O-PFC and normobaric hyperoxia is a potential theranostic for acute ischaemic stroke.

0

Complete recanalization after a single retrieval maneuver is an interventional goal in acute ischemic stroke and an independent factor for good clinical outcome. Anatomical biomarkers for predicting clot removal difficulties have not been comprehensively analyzed and await unused. We retrospectively evaluated 200 consecutive patients who suffered acute stroke and occlusion of the anterior circulation and were treated with mechanical thrombectomy through a balloon guide catheter (BGC). The primary objective was to evaluate the influence of carotid tortuosity and BGC positioning on the one-pass Modified Thrombolysis in Cerebral Infarction Scale (mTICI) 3 rate, and secondarily, the influence of communicating arteries on the angiographic results. After the first-pass mTICI 3, recanalization fell from 51 to 13%. The regression models and decision tree (supervised machine learning) results concurred: carotid tortuosity was the main constraint on efficacy, reducing the likelihood of mTICI 3 after one pass to 30%. BGC positioning was relevant only in carotid arteries without elongation: BGCs located in the distal internal carotid artery (ICA) had a 70% probability of complete recanalization after one pass, dropping to 43% if located in the proximal ICA. These findings demonstrate that first-pass mTICI 3 is influenced by anatomical and interventional factors capable of being anticipated, enabling the BGC technique to be adapted to patient’s anatomy to enhance effectivity.

0

It has been suggested that cerebral microhemorrhages (CMHs) could be involved in cognitive decline. However, little is known about the sex-dependency of this effect. Using a multimodal approach combining behavioral tests, in vivo imaging, biochemistry, and molecular biology, we studied the cortical and hippocampal impact of a CMH in male and female mice (C57BL/6J) 6 weeks post-induction using a collagenase-induced model. Our work shows for the first time that a single cortical CMH exerts sex-specific effects on cognition. It notably induced visuospatial memory impairment in males only. This sex difference might be explained by cortical changes secondary to the lesion. In fact, the CMH induced an upregulation of ERα mRNA only in the female cortex. Besides, in male mice, we observed an impairment of pathways associated to neuronal, glial, or vascular functions: decrease in the P-GSK3β/GSK3β ratio, in BDNF and VEGF levels, and in microvascular water mobility. The CMH also exerted spatial remote effects in the hippocampus by increasing the number of astrocytes in both sexes, increasing the mean area occupied by each astrocyte in males, and decreasing hippocampal BDNF in females suggesting a cortical-hippocampal network impairment. This work demonstrates that a CMH could directly affect cognition in a sex-specific manner and highlights the need to study both sexes in preclinical models.

0

Machine learning (ML) as a novel approach could help clinicians address the challenge of accurate stability assessment of unruptured intracranial aneurysms (IAs). We developed multiple ML models for IA stability assessment and compare their performances. We enrolled 1897 consecutive patients with unstable (n = 528) and stable (n = 1539) IAs. Thirteen patient-specific clinical features and eighteen aneurysm morphological features were extracted to generate support vector machine (SVM), random forest (RF), and feed-forward artificial neural network (ANN) models. The discriminatory performances of the models were compared with statistical logistic regression (LR) model and the PHASES score in IA stability assessment. Based on the receiver operating characteristic (ROC) curve and area under the curve (AUC) values for each model in the test set, the AUC values for RF, SVM, and ANN were 0.850 (95% CI 0.806-0.893), 0.858 (95 %CI 0.816-0.900), and 0.867 (95% CI 0.828-0.906), demonstrating good discriminatory ability. All ML models exhibited superior performance compared with the statistical LR and the PHASES score (the AUC values were 0.830 and 0.589, respectively; RF versus PHASES, P < 0.001; RF versus LR, P = 0.038). Important features contributing to the stability discrimination included three clinical features (location, sidewall/bifurcation type, and presence of symptoms) and three morphological features (undulation index, height-width ratio, and irregularity). These findings demonstrate the potential of ML to augment the clinical decision-making process for IA stability assessment, which may enable more optimal management for patients with IAs in the future.