Discover the most talked about and latest scientific content & concepts.

Journal: Toxins


Millions of years of evolution have fine-tuned the ability of venom peptides to rapidly incapacitate both prey and potential predators. Toxicofera reptiles are characterized by serous-secreting mandibular or maxillary glands with heightened levels of protein expression. These glands are the core anatomical components of the toxicoferan venom system, which exists in myriad points along an evolutionary continuum. Neofunctionalisation of toxins is facilitated by positive selection at functional hotspots on the ancestral protein and venom proteins have undergone dynamic diversification in helodermatid and varanid lizards as well as advanced snakes. A spectacular point on the venom system continuum is the long-glanded blue coral snake (Calliophis bivirgatus), a specialist feeder that preys on fast moving, venomous snakes which have both a high likelihood of prey escape but also represent significant danger to the predator itself. The maxillary venom glands of C. bivirgatus extend one quarter of the snake’s body length and nestle within the rib cavity. Despite the snake’s notoriety its venom has remained largely unstudied. Here we show that the venom uniquely produces spastic paralysis, in contrast to the flaccid paralysis typically produced by neurotoxic snake venoms. The toxin responsible, which we have called calliotoxin (δ-elapitoxin-Cb1a), is a three-finger toxin (3FTx). Calliotoxin shifts the voltage-dependence of NaV1.4 activation to more hyperpolarised potentials, inhibits inactivation, and produces large ramp currents, consistent with its profound effects on contractile force in an isolated skeletal muscle preparation. Voltage-gated sodium channels (NaV) are a particularly attractive pharmacological target as they are involved in almost all physiological processes including action potential generation and conduction. Accordingly, venom peptides that interfere with NaV function provide a key defensive and predatory advantage to a range of invertebrate venomous species including cone snails, scorpions, spiders, and anemones. Enhanced activation or delayed inactivation of sodium channels by toxins is associated with the extremely rapid onset of tetanic/excitatory paralysis in envenomed prey animals. A strong selection pressure exists for the evolution of such toxins where there is a high chance of prey escape. However, despite their prevalence in other venomous species, toxins causing delay of sodium channel inhibition have never previously been described in vertebrate venoms. Here we show that NaV modulators, convergent with those of invertebrates, have evolved in the venom of the long-glanded coral snake. Calliotoxin represents a functionally novel class of 3FTx and a structurally novel class of NaV toxins that will provide significant insights into the pharmacology and physiology of NaV. The toxin represents a remarkable case of functional convergence between invertebrate and vertebrate venom systems in response to similar selection pressures. These results underscore the dynamic evolution of the Toxicofera reptile system and reinforces the value of using evolution as a roadmap for biodiscovery.

Concepts: Protein, Natural selection, Predation, Toxin, Venom, Snake, Neurotoxin, Toxins


Over the past 20 years, exposure to mycotoxin producing mold has been recognized as a significant health risk. Scientific literature has demonstrated mycotoxins as possible causes of human disease in water-damaged buildings (WDB). This study was conducted to determine if selected mycotoxins could be identified in human urine from patients suffering from chronic fatigue syndrome (CFS). Patients (n = 112) with a prior diagnosis of CFS were evaluated for mold exposure and the presence of mycotoxins in their urine. Urine was tested for aflatoxins (AT), ochratoxin A (OTA) and macrocyclic trichothecenes (MT) using Enzyme Linked Immunosorbent Assays (ELISA). Urine specimens from 104 of 112 patients (93%) were positive for at least one mycotoxin (one in the equivocal range). Almost 30% of the cases had more than one mycotoxin present. OTA was the most prevalent mycotoxin detected (83%) with MT as the next most common (44%). Exposure histories indicated current and/or past exposure to WDB in over 90% of cases. Environmental testing was performed in the WDB from a subset of these patients. This testing revealed the presence of potentially mycotoxin producing mold species and mycotoxins in the environment of the WDB. Prior testing in a healthy control population with no history of exposure to a WDB or moldy environment (n = 55) by the same laboratory, utilizing the same methods, revealed no positive cases at the limits of detection.

Concepts: Aflatoxin, Mycotoxin, Aspergillus, Chronic fatigue syndrome, Ochratoxin, Mycotoxins, Stachybotrys, Mold


The most common technique used to detect ochratoxin A (OTA) in food matrices is based on extraction, clean-up, and chromatography detection. Different clean-up cartridges, such as immunoaffinity columns (IAC), molecular imprinting polymers (MIP), Mycosep™ 229, Mycospin™, and Oasis® HLB (Hydrophilic Lipophilic balance) as solid phase extraction were tested to optimize the purification for red wine, beer, roasted coffee and chili. Recovery, reproducibility, reproducibility, limit of detection (LOD) and limit of quantification (LOQ) were calculated for each clean-up method. IAC demonstrated to be suitable for OTA analysis in wine and beer with recovery rate >90%, as well as Mycosep™ for wine and chili. On the contrary, MIP columns were the most appropriate to clean up coffee. A total of 120 samples (30 wines, 30 beers, 30 roasted coffee, 30 chili) marketed in Italy were analyzed, by applying the developed clean-up methods. Twenty-seven out of 120 samples analyzed (22.7%: two wines, five beers, eight coffees, and 12 chili) resulted positive to OTA. A higher incidence of OTA was found in chili (40.0%) more than wine (6.6%), beers (16.6%) and coffee (26.6%). Moreover, OTA concentration in chili was the highest detected, reaching 47.8 µg/kg. Furthermore, three samples (2.5%), two wines and one chili, exceeded the European threshold.

Concepts: Measurement, Analytical chemistry, Detection limit, Harshad number, Wine, Oenology, Alcoholic beverage, Polyphenol


Ruminant diets include cereals, protein feeds, their by-products as well as hay and grass, grass/legume, whole-crop maize, small grain or sorghum silages. Furthermore, ruminants are annually or seasonally fed with grazed forage in many parts of the World. All these forages could be contaminated by several exometabolites of mycotoxigenic fungi that increase and diversify the risk of mycotoxin exposure in ruminants compared to swine and poultry that have less varied diets. Evidence suggests the greatest exposure for ruminants to some regulated mycotoxins (aflatoxins, trichothecenes, ochratoxin A, fumonisins and zearalenone) and to many other secondary metabolites produced by different species of Alternaria spp. (e.g., AAL toxins, alternariols, tenuazonic acid or 4Z-infectopyrone), Aspergillus flavus (e.g., kojic acid, cyclopiazonic acid or β-nitropropionic acid), Aspergillus fuminatus (e.g., gliotoxin, agroclavine, festuclavines or fumagillin), Penicillium roqueforti and P. paneum (e.g., mycophenolic acid, roquefortines, PR toxin or marcfortines) or Monascus ruber (citrinin and monacolins) could be mainly related to forage contamination. This review includes the knowledge of mycotoxin occurrence reported in the last 15 years, with special emphasis on mycotoxins detected in forages, and animal toxicological issues due to their ingestion. Strategies for preventing the problem of mycotoxin feed contamination under farm conditions are discussed.

Concepts: Fungus, Aspergillus flavus, Aflatoxin, Mycotoxin, Aspergillus, Penicillium, Ochratoxin, Mycotoxins


A novel enzyme-linked immunosorbent assay based on magnetic nanoparticles and biotin/streptavidin-HRP (MNP-bsELISA) was developed for rapid and sensitive detection of zearalenone (ZEN). The detection signal was enhanced and the sensitivity of the assay was improved by combined use of antibody-conjugated magnetic nanoparticles and biotin-streptavidin system. Under the optimized conditions, the regression equation for quantification of ZEN was y = -0.4287x + 0.3132 (R² = 0.9904). The working range was 0.07-2.41 ng/mL. The detection limit was 0.04 ng/mL and IC50 was 0.37 ng/mL. The recovery rates of intra-assay and inter-assay ranged from 92.8%-111.9% and 91.7%-114.5%, respectively, in spiked corn samples. Coefficients of variation were less than 10% in both cases. Parallel analysis of cereal and feed samples showed good correlation between MNP-bsELISA and liquid chromatograph-tandem mass spectrometry (R² = 0.9283). We conclude that this method is suitable for rapid detection of zearalenone in cereal and feed samples in relevant laboratories.

Concepts: Nanoparticle, Nanotechnology, ELISA, ELISPOT, Assay, Immunoassay, Magnetic nanoparticles, Magnetic immunoassay


Globally, mushroom poisonings cause about 100 human deaths each year, with thousands of people requiring medical assistance. Dogs are also susceptible to mushroom poisonings and require medical assistance. Cyclopeptides, and more specifically amanitins (or amatoxins, here), are the mushroom poison that causes the majority of these deaths. Current methods (predominantly chromatographic, as well as antibody-based) of detecting amatoxins are time-consuming and require expensive equipment. In this work, we demonstrate the utility of the lateral flow immunoassay (LFIA) for the rapid detection of amatoxins in urine samples. The LFIA detects as little as 10 ng/mL of α-amanitin (α-AMA) or γ-AMA, and 100 ng/mL of β-AMA in urine matrices. To demonstrate application of this LFIA for urine analysis, this study examined fortified human urine samples and urine collected from exposed dogs. Urine is sampled directly without the need for any pretreatment, detection from urine is completed in 10 min, and the results are read by eye, without the need for specialized equipment. Analysis of both fortified human urine samples and urine samples collected from intoxicated dogs using the LFIA correlated well with liquid chromatography-mass spectrometry (LC-MS) methods.


Trimethylamine N-oxide (TMAO) is a small colorless amine oxide generated from choline, betaine, and carnitine by gut microbial metabolism. It accumulates in the tissue of marine animals in high concentrations and protects against the protein-destabilizing effects of urea. Plasma level of TMAO is determined by a number of factors including diet, gut microbial flora and liver flavin monooxygenase activity. In humans, a positive correlation between elevated plasma levels of TMAO and an increased risk for major adverse cardiovascular events and death is reported. The atherogenic effect of TMAO is attributed to alterations in cholesterol and bile acid metabolism, activation of inflammatory pathways and promotion foam cell formation. TMAO levels increase with decreasing levels of kidney function and is associated with mortality in patients with chronic kidney disease. A number of therapeutic strategies are being explored to reduce TMAO levels, including use of oral broad spectrum antibiotics, promoting the growth of bacteria that utilize TMAO as substrate and the development of target-specific molecules with varying level of success. Despite the accumulating evidence, it is questioned whether TMAO is the mediator of a bystander in the disease process. Thus, it is important to undertake studies examining the cellular signaling in physiology and pathological states in order to establish the role of TMAO in health and disease in humans.

Concepts: Cholesterol, Medicine, Archaea, Bacteria, Metabolism, Enzyme, Death, Amine oxides


This conference is organized within the framework of the H2020-Research and Innovation Action-Societal Challenge 2-“Food security, sustainable agriculture and forestry, marine, maritime and inland water research and the bioeconomy challenge”-GA 678781 MycoKey “Integrated and innovative key actions for mycotoxin management in the food and feed chain” […].

Concepts: Agriculture, Research, Belgium, Food security, Innovation, Sustainable agriculture, Research and development, Brussels


Individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia. Stroke is also highly prevalent in this population and is associated with a higher risk of neurological deterioration, in-hospital mortality, and poor functional outcomes. Evidence from in vitro studies and in vivo animal experiments suggests that accumulation of uremic toxins may contribute to the pathogenesis of stroke and amplify vascular damage, leading to cognitive disorders and dementia. This review summarizes current evidence on the mechanisms by which uremic toxins may favour the occurrence of cerebrovascular diseases and neurological complications in CKD.


Fumonisins are mycotoxins (MTs) produced mainly by the fungus Fusarium verticillioides, the main pathogens of maize which cause ear rot. The aim of this work was to evaluate some factors that may lead to high fumonisin production by F. verticillioides in maize grains, correlating the pathogen inoculation method with different genotypes grown in four Brazilian states. Experiments were conducted in 2015-2016 in maize crops from experimental maize fields located in four distinct states of Brazil. Results showed that contamination by fumonisin mycotoxins occurred even on symptomatic or asymptomatic grains. In all municipalities, the samples showed levels of fumonisin B1 that were higher than would be tolerable for the human consumption of corn products (the current tolerance limit for fumonisin is 1.5 μg g-1). High severity of grains infected with F. verticillioides does not always show high concentrations of fumonisins. Environments with higher temperatures may influence the production of high concentrations of fumonisin in maize hybrids. Spray inoculation methods and inoculation at the center of spikes did not influence fumonisin concentrations. Results showed that the hybrids P3630H, P32R48 and P3250 presented higher disease severity, as well as higher mycotoxin levels in the studied locations with higher temperatures.