SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: The Science of the total environment

402

Nitrogen dioxide (NO2) is an ambient trace-gas result of both natural and anthropogenic processes. Long-term exposure to NO2 may cause a wide spectrum of severe health problems such as hypertension, diabetes, heart and cardiovascular diseases and even death. The objective of this study is to examine the relationship between long-term exposure to NO2 and coronavirus fatality. The Sentinel-5P is used for mapping the tropospheric NO2 distribution and the NCEP/NCAR reanalysis for evaluating the atmospheric capability to disperse the pollution. The spatial analysis has been conducted on a regional scale and combined with the number of death cases taken from 66 administrative regions in Italy, Spain, France and Germany. Results show that out of the 4443 fatality cases, 3487 (78%) were in five regions located in north Italy and central Spain. Additionally, the same five regions show the highest NO2 concentrations combined with downwards airflow which prevent an efficient dispersion of air pollution. These results indicate that the long-term exposure to this pollutant may be one of the most important contributors to fatality caused by the COVID-19 virus in these regions and maybe across the whole world.

171

Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of “One health” that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making.

Concepts: Immune system, Archaea, Bacteria, Organism, Eukaryote, Species, Natural environment, Microorganism

154

Characterising the organic and microbial matrix of water are key issues in ensuring a safe potable water supply. Current techniques only confirm water quality retrospectively via laboratory analysis of discrete samples. Whilst such analysis is required for regulatory purposes, it would be highly beneficial to monitor water quality in-situ in real time, enabling rapid water quality assessment and facilitating proactive management of water supply systems. A novel LED-based instrument, detecting fluorescence peaks C and T (surrogates for organic and microbial matter, respectively), was constructed and performance assessed. Results from over 200 samples taken from source waters through to customer tap from three UK water companies are presented. Excellent correlation was observed between the new device and a research grade spectrophotometer (r(2)=0.98 and 0.77 for peak C and peak T respectively), demonstrating the potential of providing a low cost, portable alternative fluorimeter. The peak C/TOC correlation was very good (r(2)=0.75) at low TOC levels found in drinking water. However, correlations between peak T and regulatory measures of microbial matter (2day/3day heterotrophic plate counts (HPC), E. coli, and total coliforms) were poor, due to the specific nature of these regulatory measures and the general measure of peak T. A more promising correlation was obtained between peak T and total bacteria using flow cytometry. Assessment of the fluorescence of four individual bacteria isolated from drinking water was also considered and excellent correlations found with peak T (Sphingobium sp. (r(2)=0.83); Methylobacterium sp. (r(2)=1.0); Rhodococcus sp. (r(2)=0.86); Xenophilus sp. (r(2)=0.96)). It is notable that each of the bacteria studied exhibited different levels of fluorescence as a function of their number. The scope for LED based instrumentation for in-situ, real time assessment of the organic and microbial matrix of potable water is clearly demonstrated.

Concepts: Water supply network

149

To assess the ecological impacts of two independent accidental bitumen releases from two steam assisted gravity drainage (SAGD) wells in the Athabasca oil sands region, a multiple lines of evidence (LOE) approach was developed. Following the release in 2010, action was taken to minimize environmental impact, including the selective removal of the most highly impacted vegetation and the use of oil socks to minimize possible runoff. An ecological risk assessment (ERA) was then conducted based on reported concentrations of bitumen related contaminants in soil, vegetation, and water. Results of biological assessments conducted at the site were also included in the risk characterization. Overall, the conclusion of the ERA was that the likelihood of long-term adverse health effects to ecological receptors in the area was negligible. To provide evidence for this conclusion, a small mammal sampling plan targeting Southern red-back voles (Myodes gapperi) was carried out at two sites and two relevant reference areas. Voles were readily collected at all locations and no statistically significant differences in morphometric measurements (i.e., body mass, length, foot length, and adjusted liver weight) were found between animals collected from impact zones of varying levels of coverage. Additionally, no trends corresponding with bitumen coverage were observed with respect to metal body burden in voles for metals that were previously identified in the source bitumen. Hepatic ethoxyresorufin-O-deethylase (EROD) activity was statistically significantly elevated in voles collected from the high impact zones of sites compared to those collected from the reference areas, a finding that is indicative of continued exposure to contaminants. However, this increase in EROD was not correlated with any observable adverse population-wide biological outcomes. Therefore the biological sampling program supported the conclusion of the initial ERA and supported the hypothesis of no significant long-term population-wide ecological impact of the accidental bitumen releases.

Concepts: Evaluation, Ecology, Petroleum, Statistical significance, Oil sands, Athabasca Oil Sands, Steam assisted gravity drainage, Heavy crude oil

145

Coupled measurements of nitrate (NO3(-)), nitrogen (N), and oxygen (O) isotopic composition (δ(15)NNO3 and δ(18)ONO3) were used to investigate the sources and processes of N cycling, while the microbial source tracking (MST) method was used to identify microbiological pollution in the surface water of the Sava River Basin (SRB) in autumn in 2014 and 2015 during high and low water discharge. Atmospheric nitrate deposition or nitrate-containing fertilizers were found not to be significant sources of riverine nitrate in the SRB. The ranges of isotope values suggest that NO3(-) in the SRB derives from soil nitrification, sewage, and/or manure, which were further supported by MST analysis. Microbiological indicators show the existence of hotspots of fecal pollution in the SRB, which are human associated. Long-term observations indicate persistent fecal contamination at selected locations caused by continuous discharge of untreated wastewaters into the SRB.

Concepts: Bacteria, Water, Nitrogen, Hydrology, Isotope, Guano, Manure, Danube

119

The mega river ecosystem of the Yangtze River was once home to diverse aquatic megafauna but is increasingly affected by various anthropogenic stressors that have resulted in continuous loss of biodiversity, such as the probable extinction of Yangtze River Dolphin. The Chinese paddlefish, Psephurus gladius, was one of only two extant members of a relict lineage that was most diverse and widespread 34-75 million years ago. It is also one of the largest freshwater fish species, reaching up to 7 m in length. The Chinese paddlefish was once common in the Yangtze River, with c.25 t being harvested per annum during the 1970s. Populations have, however, declined drastically since the late 1970s as a result of overfishing and habitat fragmentation. Here, a basin-wide capture survey during 2017-2018 found 332 fish species, but did not find a single specimen of Chinese paddlefish. Furthermore, 140 historically reported fish species have not been found and most of them are considered highly endangered. Based on 210 sightings of Chinese paddlefish during the period 1981-2003, we estimated the timing of extinction to be by 2005, and no later than by 2010. In addition, the paddlefish probably became functionally extinct (i.e. it was unable to reproduce) by 1993, before it went extinct. It is likely that the lack of reproduction was among the major causes of extinction. As no individuals exist in captivity, and no living tissues are conserved for potential resurrection, the fish should be considered extinct according to the IUCN Red List criteria. The delayed extinction of Chinese paddlefish resulted from multiple threats, suggesting that optimizing conservation efforts on endangered Yangtze fauna is urgently needed.

107

Growing evidence suggests that anthropogenic litter, particularly plastic, represents a highly pervasive and persistent threat to global marine ecosystems. Multinational research is progressing to characterise its sources, distribution and abundance so that interventions aimed at reducing future inputs and clearing extant litter can be developed. Citizen science projects, whereby members of the public gather information, offer a low-cost method of collecting large volumes of data with considerable temporal and spatial coverage. Furthermore, such projects raise awareness of environmental issues and can lead to positive changes in behaviours and attitudes. We present data collected over a decade (2005-2014 inclusive) by Marine Conservation Society (MCS) volunteers during beach litter surveys carried along the British coastline, with the aim of increasing knowledge on the composition, spatial distribution and temporal trends of coastal debris. Unlike many citizen science projects, the MCS beach litter survey programme gathers information on the number of volunteers, duration of surveys and distances covered. This comprehensive information provides an opportunity to standardise data for variation in sampling effort among surveys, enhancing the value of outputs and robustness of findings. We found that plastic is the main constituent of anthropogenic litter on British beaches and the majority of traceable items originate from land-based sources, such as public littering. We identify the coast of the Western English Channel and Celtic Sea as experiencing the highest relative litter levels. Increasing trends over the 10-year time period were detected for a number of individual item categories, yet no statistically significant change in total (effort-corrected) litter was detected. We discuss the limitations of the dataset and make recommendations for future work. The study demonstrates the value of citizen science data in providing insights that would otherwise not be possible due to logistical and financial constraints of running government-funded sampling programmes on such large scales.

Concepts: Time, Statistics, Data, Coast, Beach, Waste, Output, English Channel

98

Raising public interest in and conservation activity for threatened species is critically important for successful biodiversity conservation. However, our understanding of what influences the public interest in threatened animals and how the interest induces conservation activities is quite limited. Here, we examined the role of zoos and a television program featuring animated animals in shaping public interest in and support for animals including threatened species from 2011 to 2018 in Japan. Public interest was measured by Internet search volumes and support by donation activity in zoos. Results showed that both zoos and the animated program made a significant contribution to increasing public interest in animals. The spatial distribution of the Google search volume for 92 animals was correlated with that of animals exhibited in zoos. In tandem with this, the broadcast of a Japanese animated TV program featuring animals (Kemono Friends) increased the Google search volume and Wikipedia pageviews for animal species featured in the program. The total increases of search volume and Wikipedia pageviews were estimated to be approximately 4.66 million for 37 species and 1.06 million for 63 species, respectively. Furthermore, after the original broadcasts of the program, we found that animals featured in the animated program had more financial supporters through donations than animals that were not featured. These results are striking because they indicate the increase in public interest led to actual conservation activity by citizens. Overall, our results demonstrate that both zoos and the animated TV program played important roles in promoting public interest in and support for threatened animals. Enhanced collaborations between people in the entertainment industry and conservation entities could contribute greatly to global biodiversity conservation.

91

Global plastics production has reached 380 million metric tons in 2015, with around 40% used for packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along with other components, such as adhesives or coatings. Further, packaging can contain residues from substances used during manufacturing, such as solvents, along with non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, comprehensive information on all chemicals involved is needed. Here, we present a database of Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations' Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme. The identified hazardous chemicals are used in plastics as monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, accelerators, and colorants, among other functions. Our work was challenged by a lack of transparency and incompleteness of publicly available information on both the use and toxicity of numerous substances. The most hazardous chemicals identified here should be assessed in detail as potential candidates for substitution.

76

Although microplastics are a recognised pollutant in marine environments, less attention has been directed towards freshwater ecosystems despite their greater proximity to possible plastic sources. Here, we quantify the presence of microplastic particles (MPs) in river organisms upstream and downstream of five UK Wastewater Treatment Works (WwTWs). MPs were identified in approximately 50% of macroinvertebrate samples collected (Baetidae, Heptageniidae and Hydropsychidae) at concentrations up to 0.14 MP mg tissue-1 and they occurred at all sites. MP abundance was associated with macroinvertebrate biomass and taxonomic family, but MPs occurred independently of feeding guild and biological traits such as habitat affinity and ecological niche. There was no increase in plastic ingestion downstream of WwTW discharges averaged across sites, but MP abundance in macroinvertebrates marginally increased where effluent discharges contributed more to total runoff and declined with increasing river discharge. The ubiquity of microplastics within macroinvertebrates in this case study reveals a potential risk from MPs entering riverine food webs through at least two pathways, involving detritivory and filter-feeding, and we recommend closer attention to freshwater ecosystems in future research.