SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: The New phytologist

192

Pollination of several angiosperms is based on deceit. In such systems, the flowers advertise a reward that ultimately is not provided. We report on a previously unknown pollination/mimicry system discovered in deceptive Aristolochia rotunda (Aristolochiaceae). Pollinators were collected in the natural habitat and identified. Flower scent and the volatiles of insects (models) potentially mimicked were analyzed by chemical analytical techniques. Electrophysiological and behavioral tests on the pollinators identified the components that mediate the plant-pollinator interaction and revealed the model of the mimicry system. The main pollinators of A. rotunda were female Chloropidae. They are food thieves that feed on secretions of true bugs (Miridae) while these are eaten by arthropod predators. Freshly killed mirids and Aristolochia flowers released the same scent components that chloropids use to find their food sources. Aristolochia exploits these components to deceive their chloropid pollinators. Aristolochia and other trap flowers were believed to lure saprophilous flies and mimic brood sites of pollinators. We demonstrate for A. rotunda, and hypothesize for other deceptive angiosperms, the evolution of a different, kleptomyiophilous pollination strategy. It involves scent mimicry and the exploitation of kleptoparasitic flies as pollinators. Our findings suggest a reconsideration of plants assumed to show sapromyiophilous pollination.

Concepts: Insect, Mimicry, Pollination, Flower, Lepidoptera, Pollen, Deception, Aristolochia

85

Atmospheric carbon dioxide concentration ([CO2 ]) is increasing, which increases leaf-scale photosynthesis and intrinsic water-use efficiency. These direct responses have the potential to increase plant growth, vegetation biomass, and soil organic matter; transferring carbon from the atmosphere into terrestrial ecosystems (a carbon sink). A substantial global terrestrial carbon sink would slow the rate of [CO2 ] increase and thus climate change. However, ecosystem CO2 -responses are complex or confounded by concurrent changes in multiple agents of global change and evidence for a [CO2 ]-driven terrestrial carbon sink can appear contradictory. Here we synthesise theory and broad, multi-disciplinary evidence for the effects of increasing [CO2 ] (iCO2) on the global terrestrial carbon sink. Evidence suggests a substantial increase in global photosynthesis since pre-industry. Established theory, supported by experiments, indicates that iCO2 is likely responsible for about half of the increase. Global carbon budgeting, atmospheric data, and forest inventories indicate a historical carbon sink, and these apparent iCO2-responses are high in comparison with experiments and theory. Plant mortality and soil carbon iCO2-responses are highly uncertain. In conclusion, a range of evidence supports a positive terrestrial carbon sink in response to iCO2, albeit with uncertain magnitude and strong suggestion of a role for additional agents of global change.

43

Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health benefits have been attributed to glucoraphanin that specifically accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health benefits. Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantified in experimental field trials. Global SNP analyses quantified the differential extent of B. villosa introgression The high-glucoraphanin broccoli hybrids contained 2.5-3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modifications in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28 expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforté(®) broccoli. The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer benefits, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studies.

Concepts: DNA, Gene, Genetics, Gene expression, Brassicaceae, Cabbage, Cauliflower, Kale

41

Much of humanity relies on rice (Oryza sativa) as a food source, but cultivation is water intensive and the crop is vulnerable to drought and high temperatures. Under climate change, periods of reduced water availability and high temperature are expected to become more frequent, leading to detrimental effects on rice yields. We engineered the high-yielding rice cultivar ‘IR64’ to produce fewer stomata by manipulating the level of a developmental signal. We overexpressed the rice epidermal patterning factor OsEPF1, creating plants with substantially reduced stomatal density and correspondingly low stomatal conductance. Low stomatal density rice lines were more able to conserve water, using c. 60% of the normal amount between weeks 4 and 5 post germination. When grown at elevated atmospheric CO2 , rice plants with low stomatal density were able to maintain their stomatal conductance and survive drought and high temperature (40°C) for longer than control plants. Low stomatal density rice gave equivalent or even improved yields, despite a reduced rate of photosynthesis in some conditions. Rice plants with fewer stomata are drought tolerant and more conservative in their water use, and they should perform better in the future when climate change is expected to threaten food security.

40

Contents I. II. III. IV. V. References SUMMARY: The legume-rhizobia association is a powerful model of the limits of host control over microbes. Legumes regulate the formation of root nodules that house nitrogen-fixing rhizobia and adjust investment into nodule development and growth. However, the range of fitness outcomes in these traits reveals intense conflicts of interest between the partners. New work that we review and synthesize here shows that legumes have evolved varied mechanisms of control over symbionts, but that host control is often subverted by rhizobia. An outcome of this conflict is that both legumes and rhizobia have evolved numerous traits that can improve their own short-term fitness in this interaction, but little evidence exists for any net improvement in the joint trait of nitrogen fixation.

38

The plant microbiome can influence plant phenotype in diverse ways, yet microbial contribution to plant volatile phenotype remains poorly understood. We examine the presence of fungi and bacteria in the nectar of a coflowering plant community, characterize the volatiles produced by common nectar microbes and examine their influence on pollinator preference. Nectar was sampled for the presence of nectar-inhabiting microbes. We characterized the headspace of four common fungi and bacteria in a nectar analog. We examined electrophysiological and behavioral responses of honey bees to microbial volatiles. Floral headspace samples collected in the field were surveyed for the presence of microbial volatiles. Microbes commonly inhabit floral nectar and the common species differ in volatile profiles. Honey bees detected most microbial volatiles tested and distinguished among solutions based on volatiles only. Floral headspace samples contained microbial-associated volatiles, with 2-ethyl-1-hexanol and 2-nonanone - both detected by bees - more often detected when fungi were abundant. Nectar-inhabiting microorganisms produce volatile compounds, which can differentially affect honey bee preference. The yeast Metschnikowia reukaufii produced distinctive compounds and was the most attractive of all microbes compared. The variable presence of microbes may provide volatile cues that influence plant-pollinator interactions.

Concepts: Bacteria, Organism, Eukaryote, Species, Water, Honey bee, Beekeeping, Bee

34

Extant land plants consist of two deeply divergent groups, tracheophytes and bryophytes, which shared a common ancestor some 500 million years ago. While information about vascular plants and the two of the three lineages of bryophytes, the mosses and liverworts, is steadily accumulating, the biology of hornworts is poorly explored. Yet, as the sister group to liverworts and mosses, hornworts are critical in understanding the evolution of key land plant traits. Until recently, there was no hornwort model species amenable to systematic experimental investigation, which hampered detailed insight into the molecular biology and genetics of this unique group of land plants. The emerging hornwort model species, Anthoceros agrestis is instrumental in our efforts to better understand not only hornwort biology but also fundamental questions of land plant evolution. To this end, here we provide an overview of hornwort biology and current research on the model plant A. agrestis to highlight its potential in answering key questions of land plant biology and evolution.

33

Photosynthetic induction describes the transient increase in leaf CO2 uptake with an increase in light. During induction, efficiency is lower than at steady state. Under field conditions of fluctuating light, this lower efficiency during induction may cost > 20% of potential crop assimilation. Accelerating induction would boost photosynthetic and resource-use efficiencies. Variation between rice accessions and potential for accelerating induction was analysed by gas exchange. Induction during shade to sun transitions of 14 accessions representing five subpopulations from the 3000 Rice Genome Project Panel (3K RGP) was analysed. Differences of 109% occurred in the CO2 fixed during the first 300 s of induction, 117% in the half-time to completion of induction, and 65% in intrinsic water-use efficiency during induction, between the highest and lowest performing accessions. Induction in three accessions with contrasting responses (AUS 278, NCS 771 A and IR64-21) was compared for a range of [CO2 ] to analyse limitations. This showed in vivo capacity for carboxylation at Rubisco (Vc,max ), and not stomata, as the primary limitation to induction, with significant differences between accessions. Variation in nonsteady-state efficiency greatly exceeded that at steady state, suggesting a new and more promising opportunity for selection of greater crop photosynthetic efficiency in this key food crop.

31

Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40-60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.

Concepts: DNA, Protein, Genetics, Gene expression, Cell, Archaea, Bacteria, RNA

31

Although cooperative interactions among kin have been established in a variety of biological systems, their occurrence in plants remains controversial. Plants of Arabidopsis thaliana were grown in rows of either a single or multiple accessions. Plants recognized kin neighbours and horizontally reoriented leaf growth, a response not observed when plants were grown with nonkin. Plant kin recognition involved the perception of the vertical red/far-red light and blue light profiles. Disruption of the light profiles, mutations at the PHYTOCHROME B, CRYPTOCHROME 1 or 2, or PHOTOTROPIN 1 or 2 photoreceptor genes or mutations at the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 gene required for auxin (growth hormone) synthesis impaired the response. The leaf-position response increases plant self-shading, decreases mutual shading between neighbours and increases fitness. Light signals from neighbours are known to shape a more competitive plant body. Here we show that photosensory receptors mediate cooperative rather than competitive interactions among kin neighbours by reducing the competition for local pools of resources.

Concepts: Photosynthesis, Gene, Genetics, Evolution, Growth hormone, Arabidopsis thaliana, Phytochrome, Phototropin