Discover the most talked about and latest scientific content & concepts.

Journal: The Journal of nutrition


Evidence suggests that human milk oligosaccharides (HMOs) provide multiple benefits to infants, including prebiotic effects, gut maturation, antimicrobial activities, and immune modulation. Clinical intervention studies with HMOs are required to confirm these benefits in infants.

Concepts: Infant, The Canon of Medicine, Randomized controlled trial, Milk, Breastfeeding, Lactation, Clinical research, Breast milk



Background: Postprandial hyperlipidemia is associated with impaired endothelial function. Peanut consumption favorably affects the lipid and lipoprotein profile; however, the effects on endothelial function remain unclear.Objective: The purpose of the study was to evaluate the effects of acute peanut consumption as part of a high-fat meal on postprandial endothelial function.Methods: We conducted a randomized, controlled, crossover postprandial study to evaluate the effect of acute peanut consumption on postprandial lipids and endothelial function as assessed by flow-mediated dilatation (FMD) of the brachial artery in 15 healthy overweight or obese men [mean age: 26.7 y; mean body mass index (in kg/m(2)): 31.4]. Participants consumed, in a randomized order, a peanut meal containing 3 ounces (85 g) ground peanuts (1198 kcal; 40.0% carbohydrate, 47.7% fat, 19.4% saturated fat, 13.2% protein) and a control meal matched for energy and macronutrient content. Meals were in the form of a shake, scheduled ≥1 wk apart. Lipids, lipoproteins, glucose, and insulin were measured at baseline (0 min) and at 30, 60, 120, and 240 min after shake consumption. FMD was measured at baseline and at 240 min.Results: Acute peanut consumption blunted the serum triglyceride (TG) response 120 and 240 min after consumption compared with the control meal (means ± SEMs-120 min: 188.9 ± 19.4 compared with 197.5 ± 20.7 mg/dL; 240 min: 189.9 ± 24.3 compared with 197.3 ± 18.4 mg/dL; P < 0.05 for both). Total, LDL, and HDL cholesterol and glucose and insulin responses were similar between the test meals. Compared with baseline, only the control meal significantly decreased FMD at 240 min (control: -1.2% ± 0.5%; P = 0.029; peanut: -0.6% ± 0.5%; P = 0.3). Participants with higher baseline total (>150 mg/dL) and LDL (>100 mg/dL)-cholesterol concentrations showed a significant decrease in FMD after the control meal (-1.8%, P = 0.017; -2.0%, P = 0.038), whereas the peanut meal maintained endothelial function in all participants irrespective of total- and LDL-cholesterol concentrations.Conclusion: The inclusion of 85 g peanuts (3 ounces) as part of a high-fat meal improved the postprandial TG response and preserved endothelial function in healthy overweight or obese men. This trial was registered at as NCT01405300.

Concepts: Cholesterol, Nutrition, Atherosclerosis, Insulin, Obesity, Fat, Lipoprotein, Lipid


Dietary guidelines are designed to help meet nutritional requirements, but they do not explicitly or quantitatively account for food contaminant exposures.

Concepts: Nutrition, Food safety, Food contaminants


Previous work demonstrated that a soy-dairy protein blend (PB) prolongs hyperaminoacidemia and muscle protein synthesis in young adults after resistance exercise.

Concepts: Proteins, Metabolism, Whey protein, Muscle, Physical exercise, Milk, Actin, Whey


Epidemiologic data suggest that diets rich in nuts have beneficial health effects, including reducing total and cause-specific mortality from cancer and heart disease. Although there is accumulating preclinical evidence that walnuts beneficially affect the gastrointestinal microbiota and gut and metabolic health, these relations have not been investigated in humans.


Background: Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function.Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes.Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants (n = 48) and in normal-weight (body mass index: <25; n = 14) and overweight or obese (≥25; n = 34) participants by using linear mixed models.Results: The almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL (P < 0.05). No diet effects were observed in the overweight or obese group.Conclusions: Substituting almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable circulating HDL subpopulation distribution and improve cholesterol efflux in normal-weight individuals with elevated LDL cholesterol. This trial was registered at as NCT01101230.

Concepts: Cholesterol, Nutrition, Atherosclerosis, Obesity, Cardiovascular disease, Low-density lipoprotein, High-density lipoprotein, Body mass index


At rest, omission of breakfast lowers daily energy intake, but also lowers energy expenditure, attenuating any effect on energy balance. The effect of breakfast omission on energy balance when exercise is prescribed is unclear.


Relative prices of healthy/unhealthy foods have been implicated in the obesity epidemic, but never extensively quantified across countries or empirically linked to undernutrition.


Background: Recent studies have proposed that humans may perceive complex carbohydrates and that sensitivity to simple carbohydrates is independent of sensitivity to complex carbohydrates. Variation in oral complex carbohydrate sensitivity may influence food consumption.Objective: This study aimed to investigate the associations between oral complex carbohydrate sensitivity, anthropometry, and dietary intake in adults.Methods: We assessed oral sensitivity to complex carbohydrates (maltodextrin and oligofructose) by measuring detection thresholds (DTs) and suprathreshold intensity perceptions (STs) for 34 participants, including 16 men (mean ± SEM age : 26.2 ± 0.4 y; range: 24-30 y) and 18 women (age: 29.4 ± 2.1 y; range: 24-55 y). We also measured height, weight, and waist circumference (WC) and participants completed a 4-d food diary and a food-frequency questionnaire.Results: Measurements of oral sensitivity to complex carbohydrates were significantly correlated with WC and dietary energy and starch intakes (DT: r = -0.38, P < 0.05; ST: r = 0.36-0.48, P < 0.05). When participants were grouped into tertiles, there were significant differences in WC and total energy or starch intakes for those who were more sensitive or experienced high intensity compared with those who were less sensitive or experienced low intensity. Being more sensitive or experiencing high intensity was associated with greater energy (7968-8954 kJ/d) and starch (29.1-29.8% of energy) intakes and a greater WC (88.2-91.4 cm) than was being less sensitive or experiencing low intensity (6693-7747 kJ/d, 20.9-22.2% of energy, and 75.5-80.5 cm, respectively).Conclusion: Complex carbohydrate sensing is associated with WC and consumption of complex carbohydrates and energy in adults. This trial was registered at as ACTRN12616001356459.

Concepts: Nutrition, Energy, Glucose, Starch, Polysaccharide, Carbohydrate, Carbohydrates, Oligosaccharide