SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Science translational medicine

101

Intracortical microstimulation of the somatosensory cortex offers the potential for creating a sensory neuroprosthesis to restore tactile sensation. Whereas animal studies have suggested that both cutaneous and proprioceptive percepts can be evoked using this approach, the perceptual quality of the stimuli cannot be measured in these experiments. We show that microstimulation within the hand area of the somatosensory cortex of a person with long-term spinal cord injury evokes tactile sensations perceived as originating from locations on the hand and that cortical stimulation sites are organized according to expected somatotopic principles. Many of these percepts exhibit naturalistic characteristics (including feelings of pressure), can be evoked at low stimulation amplitudes, and remain stable for months. Further, modulating the stimulus amplitude grades the perceptual intensity of the stimuli, suggesting that intracortical microstimulation could be used to convey information about the contact location and pressure necessary to perform dexterous hand movements associated with object manipulation.

Concepts: Perception, Sensory system, Skin, Sense, Somatosensory system, Mind, Proprioception, Philosophy of perception

92

Alcohol-based disinfectants and particularly hand rubs are a key way to control hospital infections worldwide. Such disinfectants restrict transmission of pathogens, such as multidrug-resistant Staphylococcus aureus and Enterococcus faecium Despite this success, health care infections caused by E. faecium are increasing. We tested alcohol tolerance of 139 hospital isolates of E. faecium obtained between 1997 and 2015 and found that E. faecium isolates after 2010 were 10-fold more tolerant to killing by alcohol than were older isolates. Using a mouse gut colonization model of E. faecium transmission, we showed that alcohol-tolerant E. faecium resisted standard 70% isopropanol surface disinfection, resulting in greater mouse gut colonization compared to alcohol-sensitive E. faecium We next looked for bacterial genomic signatures of adaptation. Alcohol-tolerant E. faecium accumulated mutations in genes involved in carbohydrate uptake and metabolism. Mutagenesis confirmed the roles of these genes in the tolerance of E. faecium to isopropanol. These findings suggest that bacterial adaptation is complicating infection control recommendations, necessitating additional procedures to prevent E. faecium from spreading in hospital settings.

86

The current paradigm of robot-assisted surgeries (RASs) depends entirely on an individual surgeon’s manual capability. Autonomous robotic surgery-removing the surgeon’s hands-promises enhanced efficacy, safety, and improved access to optimized surgical techniques. Surgeries involving soft tissue have not been performed autonomously because of technological limitations, including lack of vision systems that can distinguish and track the target tissues in dynamic surgical environments and lack of intelligent algorithms that can execute complex surgical tasks. We demonstrate in vivo supervised autonomous soft tissue surgery in an open surgical setting, enabled by a plenoptic three-dimensional and near-infrared fluorescent (NIRF) imaging system and an autonomous suturing algorithm. Inspired by the best human surgical practices, a computer program generates a plan to complete complex surgical tasks on deformable soft tissue, such as suturing and intestinal anastomosis. We compared metrics of anastomosis-including the consistency of suturing informed by the average suture spacing, the pressure at which the anastomosis leaked, the number of mistakes that required removing the needle from the tissue, completion time, and lumen reduction in intestinal anastomoses-between our supervised autonomous system, manual laparoscopic surgery, and clinically used RAS approaches. Despite dynamic scene changes and tissue movement during surgery, we demonstrate that the outcome of supervised autonomous procedures is superior to surgery performed by expert surgeons and RAS techniques in ex vivo porcine tissues and in living pigs. These results demonstrate the potential for autonomous robots to improve the efficacy, consistency, functional outcome, and accessibility of surgical techniques.

Concepts: Surgery, Physician, Tissues, Surgeon, Laparoscopic surgery, Laparoscopy, Anastomosis, Abu al-Qasim al-Zahrawi

85

There is much interest in form-fitting, low-modulus, implantable devices or soft robots that can mimic or assist in complex biological functions such as the contraction of heart muscle. We present a soft robotic sleeve that is implanted around the heart and actively compresses and twists to act as a cardiac ventricular assist device. The sleeve does not contact blood, obviating the need for anticoagulation therapy or blood thinners, and reduces complications with current ventricular assist devices, such as clotting and infection. Our approach used a biologically inspired design to orient individual contracting elements or actuators in a layered helical and circumferential fashion, mimicking the orientation of the outer two muscle layers of the mammalian heart. The resulting implantable soft robot mimicked the form and function of the native heart, with a stiffness value of the same order of magnitude as that of the heart tissue. We demonstrated feasibility of this soft sleeve device for supporting heart function in a porcine model of acute heart failure. The soft robotic sleeve can be customized to patient-specific needs and may have the potential to act as a bridge to transplant for patients with heart failure.

Concepts: Blood, Cardiology, Heart, Muscle, Cardiac muscle, Circulatory system, Mammal, Ventricular assist device

78

Conventional methods for histopathologic tissue diagnosis are labor- and time-intensive and can delay decision-making during diagnostic and therapeutic procedures. We report the development of an automated and biocompatible handheld mass spectrometry device for rapid and nondestructive diagnosis of human cancer tissues. The device, named MasSpec Pen, enables controlled and automated delivery of a discrete water droplet to a tissue surface for efficient extraction of biomolecules. We used the MasSpec Pen for ex vivo molecular analysis of 20 human cancer thin tissue sections and 253 human patient tissue samples including normal and cancerous tissues from breast, lung, thyroid, and ovary. The mass spectra obtained presented rich molecular profiles characterized by a variety of potential cancer biomarkers identified as metabolites, lipids, and proteins. Statistical classifiers built from the histologically validated molecular database allowed cancer prediction with high sensitivity (96.4%), specificity (96.2%), and overall accuracy (96.3%), as well as prediction of benign and malignant thyroid tumors and different histologic subtypes of lung cancer. Notably, our classifier allowed accurate diagnosis of cancer in marginal tumor regions presenting mixed histologic composition. Last, we demonstrate that the MasSpec Pen is suited for in vivo cancer diagnosis during surgery performed in tumor-bearing mouse models, without causing any observable tissue harm or stress to the animal. Our results provide evidence that the MasSpec Pen could potentially be used as a clinical and intraoperative technology for ex vivo and in vivo cancer diagnosis.

Concepts: Cancer, Oncology, Lung cancer, Cancer staging, Histology, Benign tumor, Tumor, Neoplasm

73

Male infertility affects up to 12% of the world’s male population and is linked to various environmental and medical conditions. Manual microscope-based testing and computer-assisted semen analysis (CASA) are the current standard methods to diagnose male infertility; however, these methods are labor-intensive, expensive, and laboratory-based. Cultural and socially dominated stigma against male infertility testing hinders a large number of men from getting tested for infertility, especially in resource-limited African countries. We describe the development and clinical testing of an automated smartphone-based semen analyzer designed for quantitative measurement of sperm concentration and motility for point-of-care male infertility screening. Using a total of 350 clinical semen specimens at a fertility clinic, we have shown that our assay can analyze an unwashed, unprocessed liquefied semen sample with <5-s mean processing time and provide the user a semen quality evaluation based on the World Health Organization (WHO) guidelines with ~98% accuracy. The work suggests that the integration of microfluidics, optical sensing accessories, and advances in consumer electronics, particularly smartphone capabilities, can make remote semen quality testing accessible to people in both developed and developing countries who have access to smartphones.

Concepts: Evaluation, Sperm, Semen analysis, Fertility, Spermatozoon, Semen, World Health Organization, Fertility medicine

70

Otitis media is the most common reason U.S. children receive antibiotics. The requisite 7- to 10-day course of oral antibiotics can be challenging to deliver in children, entails potential systemic toxicity, and encourages selection of antimicrobial-resistant bacteria. We developed a drug delivery system that, when applied once to the tympanic membrane through the external auditory canal, delivers an entire course of antimicrobial therapy to the middle ear. A pentablock copolymer poloxamer 407-polybutylphosphoester (P407-PBP) was designed to flow easily during application and then to form a mechanically strong hydrogel on the tympanic membrane. U.S. Food and Drug Administration-approved chemical permeation enhancers within the hydrogel assisted flux of the antibiotic ciprofloxacin across the membrane. This drug delivery system completely eradicated otitis media from nontypable Haemophilus influenzae (NTHi) in 10 of 10 chinchillas, whereas only 62.5% of animals receiving 1% ciprofloxacin alone had cleared the infection by day 7. The hydrogel system was biocompatible in the ear, and ciprofloxacin was undetectable systemically (in blood), confirming local drug delivery and activity. This fast-gelling hydrogel could improve compliance, minimize side effects, and prevent systemic distribution of antibiotics in one of the most common pediatric illnesses, possibly minimizing the development of antibiotic resistance.

Concepts: Medicine, Bacteria, Auditory system, Otitis media, Ear, Penicillin, Clostridium difficile, Haemophilus influenzae

70

Amyloid-β (Aβ) peptide has been implicated in the pathogenesis of Alzheimer’s disease (AD). We present a nonpharmacological approach for removing Aβ and restoring memory function in a mouse model of AD in which Aβ is deposited in the brain. We used repeated scanning ultrasound (SUS) treatments of the mouse brain to remove Aβ, without the need for any additional therapeutic agent such as anti-Aβ antibody. Spinning disk confocal microscopy and high-resolution three-dimensional reconstruction revealed extensive internalization of Aβ into the lysosomes of activated microglia in mouse brains subjected to SUS, with no concomitant increase observed in the number of microglia. Plaque burden was reduced in SUS-treated AD mice compared to sham-treated animals, and cleared plaques were observed in 75% of SUS-treated mice. Treated AD mice also displayed improved performance on three memory tasks: the Y-maze, the novel object recognition test, and the active place avoidance task. Our findings suggest that repeated SUS is useful for removing Aβ in the mouse brain without causing overt damage, and should be explored further as a noninvasive method with therapeutic potential in AD.

Concepts: Alzheimer's disease, Brain, Human brain, Cognition, Peptide, Memory, Rat, Mouse

68

Vitrification, a kinetic process of liquid solidification into glass, poses many potential benefits for tissue cryopreservation including indefinite storage, banking, and facilitation of tissue matching for transplantation. To date, however, successful rewarming of tissues vitrified in VS55, a cryoprotectant solution, can only be achieved by convective warming of small volumes on the order of 1 ml. Successful rewarming requires both uniform and fast rates to reduce thermal mechanical stress and cracks, and to prevent rewarming phase crystallization. We present a scalable nanowarming technology for 1- to 80-ml samples using radiofrequency-excited mesoporous silica-coated iron oxide nanoparticles in VS55. Advanced imaging including sweep imaging with Fourier transform and microcomputed tomography was used to verify loading and unloading of VS55 and nanoparticles and successful vitrification of porcine arteries. Nanowarming was then used to demonstrate uniform and rapid rewarming at >130°C/min in both physical (1 to 80 ml) and biological systems including human dermal fibroblast cells, porcine arteries and porcine aortic heart valve leaflet tissues (1 to 50 ml). Nanowarming yielded viability that matched control and/or exceeded gold standard convective warming in 1- to 50-ml systems, and improved viability compared to slow-warmed (crystallized) samples. Last, biomechanical testing displayed no significant biomechanical property changes in blood vessel length or elastic modulus after nanowarming compared to untreated fresh control porcine arteries. In aggregate, these results demonstrate new physical and biological evidence that nanowarming can improve the outcome of vitrified cryogenic storage of tissues in larger sample volumes.

Concepts: Blood, Extracellular matrix, Blood vessel, Fourier transform, Glass transition, Cryobiology, Cryopreservation, Cryoprotectant

65

Autologous T cells engineered to express chimeric antigen receptor against the B cell antigen CD19 (CAR19) are achieving marked leukemic remissions in early-phase trials but can be difficult to manufacture, especially in infants or heavily treated patients. We generated universal CAR19 (UCART19) T cells by lentiviral transduction of non-human leukocyte antigen-matched donor cells and simultaneous transcription activator-like effector nuclease (TALEN)-mediated gene editing of T cell receptor α chain and CD52 gene loci. Two infants with relapsed refractory CD19(+) B cell acute lymphoblastic leukemia received lymphodepleting chemotherapy and anti-CD52 serotherapy, followed by a single-dose infusion of UCART19 cells. Molecular remissions were achieved within 28 days in both infants, and UCART19 cells persisted until conditioning ahead of successful allogeneic stem cell transplantation. This bridge-to-transplantation strategy demonstrates the therapeutic potential of gene-editing technology.

Concepts: DNA, Protein, B cell, T cell, Major histocompatibility complex, T cell receptor, Leukemia, Acute lymphoblastic leukemia