Discover the most talked about and latest scientific content & concepts.

Journal: Science China. Life sciences


The glycerol utilization (gyl) operon is involved in clavulanic acid (CA) production by Streptomyces clavuligerus, and possibly supplies the glyceraldehyde-3-phosphate (G3P) precursor for CA biosynthesis. The gyl operon is regulated by GylR and is induced by glycerol. To enhance CA production in S. clavuligerus, an extra copy of ccaR expressed from Pgyl (the gyl promoter) was integrated into the chromosome of S. clavuligerus NRRL 3585. This construct coordinated the transcription of CA biosynthetic pathway genes with expression of the gyl operon. In the transformants carrying the Pgyl-controlled regulatory gene ccaR, CA production was enhanced 3.19-fold in glycerol-enriched batch cultures, relative to the control strain carrying an extra copy of ccaR controlled by its own promoter (PccaR). Consistent with enhanced CA production, the transcription levels of ccaR, ceas2 and claR were significantly up-regulated in the transformants containing Pgyl-controlled ccaR.

Concepts: DNA, Protein, Gene, Gene expression, Bacteria, Amino acid, Clavulanic acid, Streptomyces clavuligerus


Verticillium wilt disease becomes a major threat to many economically important crops. It is unclear whether and how plant immunity takes place during cotton-Verticillium interaction due to the lack of marker genes. Taking advantage of cotton (Gossypium hirsutum) genome, we discovered pathogenesis-related (PR) gene families, which have been widely used as markers of immune responses in plants. To profile the expression of G. hirsutum PR genes in the process of plant immunity, we treated cotton roots with two immunogenic peptides, flg22 and nlp20 known as pathogen-associated molecular patterns, as well as three Verticillium dahliae-derived peptides, nlp20(Vd2), nlp23(Vd3), and nlp23(Vd4) which are highly identical to nlp20. Quantitative real-time PCR results revealed that 14 G. hirsutum PR gene (GhPR) families were induced or suppressed independently in response to flg22, nlp20, nlp20(Vd2), nlp23(Vd3), and nlp23(Vd4). Most GhPR genes are expressed highest at 3 h post incubation of immunogenic peptides. Compared to flg22 and nlp20, nlp20(Vd2) is more effective to trigger up-regulated expression of GhPR genes. Notably, both nlp23(Vd3) and nlp23(Vd4) are able to induce GhPR gene up-regulation, although they do not induce necrosis on cotton leaves. Thus, our results provide marker genes and new immunogenic peptides for further investigation of cotton-V. dahliae interaction.

Concepts: Immune system, DNA, Gene, Gene expression, Bacteria, Polymerase chain reaction, Molecular biology, Organism


Verticillium dahliae is a soil-borne phytopathogenic fungus that causes vascular wilt disease in a broad range of hosts. This pathogen survives for many years in soil in the form of melanized microsclerotia. To investigate the melanin synthesis in V. dahliae, we identified a polyketide synthase gene in V. dahliae, namely VdPKS1. PKS1 is known to involve in the dihydroxynaphthalene melanin synthesis pathway in many fungi. We found that VdPKS1 was required for melanin formation but not for microsclerotial production in V. dahliae. The VdPKS1 gene-disruption mutant (vdpks1) formed melanin-deficient albino microsclerotia, which did not affect the fungal colonization in host tissues but significantly reduced the disease severity. Gene transcription analysis in the wild-type and the vdpks1 strains suggested that VdPKS1 gene-disruption influenced the expression of a series of genes involved in ethylene biosynthesis, microsclerotial formation and pathogenesis. Our results suggest that the VdPKS1-mediated melanin synthesis is important for virulence and developmental traits of V. dahliae.

Concepts: HIV, DNA, Gene, Gene expression, Bacteria, Transcription, Fungus, Melanin


Increasing the self-resistance levels of Streptomyces is an effective strategy to improve the production of antibiotics. To increase the oxytetracycline (OTC) production in Streptomyces rimosus, we investigated the cooperative effect of three co-overexpressing OTC resistance genes: one gene encodes a ribosomal protection protein (otrA) and the other two express efflux proteins (otrB and otrC). Results indicated that combinational overexpression of otrA, otrB, and otrC (MKABC) exerted a synergetic effect. OTC production increased by 179% in the recombinant strain compared with that of the wild-type strain M4018. The resistance level to OTC was increased by approximately two-fold relative to the parental strain, thereby indicating that applying the cooperative effect of self-resistance genes is useful to improve OTC production. Furthermore, the previously identified cluster-situated activator OtcR was overexpressed in MKABC in constructing the recombinant strain MKRABC; such strain can produce OTC of approximately 7.49 g L(-1), which represents an increase of 19% in comparison with that of the OtcR-overexpressing strain alone. Our work showed that the cooperative overexpression of self-resistance genes is a promising strategy to enhance the antibiotics production in Streptomyces.

Concepts: DNA, Protein, Gene, Gene expression, Bacteria, Virus, RNA, Antibiotic resistance


The economic benefits of insect-resistant genetically modified (GM) crops have been well documented, but the impact of such crops and the consequent reduction in pesticide use on farmers' health remains largely unknown. Through the analysis of the data collected from the physical examination from farmers in China, we show that GM rice significantly reduces pesticide use and the resultant not only visible but also invisible adverse effects on farmers' neurological, hematological, and electrolyte system. Hence, the commercialization of GM rice is expected to improve the health of farmers in developing countries, where pesticide application is necessary to mitigate crop loss.

Concepts: Agriculture, Nutrition, Adverse drug reaction, Pesticide, Developing country, Physical examination, Crops, Crop


Alzheimer’s disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut microbiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the “hygiene hypothesis”. All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD.

Concepts: Psychology, Brain, Bacteria, Gut flora, Microbiology, Neurology, Neurodegeneration, Neurodegenerative disorders


A couple with a proband child of GJB2 (encoding the gap junction protein connexin 26)-associated hearing impairment and a previous pregnancy miscarriage sought for a reproductive solution to bear a healthy child. Our study aimed to develop a customized preconception-to-neonate care trajectory to fulfill this clinical demand by integrating preimplantation genetic diagnosis (PGD), noninvasive prenatal testing (NIPT), and noninvasive prenatal diagnosis (NIPD) into the strategy. Auditory and genetic diagnosis of the proband child was carried out to identify the disease causative mutations. The couple then received in-vitro-fertilization treatment, and eight embryos were obtained for day 5 biopsy. PGD was performed by short-tandem-repeat linkage analysis and Sanger sequencing of GJB2 gene. Transfer of a GJB2c.235delC heterozygous embryo resulted in a singleton pregnancy. At the 13th week of gestation, genomic DNA (gDNA) from the trio family and cell-free DNA (cfDNA) from maternal plasma were obtained for assessment of fetal chromosomal aneuploidy and GJB2 mutations. NIPT and NIPD showed the absence of chromosomal aneuploidy and GJB2-associated disease in the fetus, which was later confirmed by invasive procedures and postnatal genetic/auditory diagnosis. This strategy successfully prevented the transmission of hearing impairment in the newborn, thus providing a valuable experience in reproductive management of similar cases and potentially other monogenic disorders.

Concepts: DNA, Gene, Pregnancy, Embryo, Fetus, Uterus, Preimplantation genetic diagnosis, Prenatal diagnosis


The human influenza A (H3N2) virus dominated the 2014-2015 winter season in many countries and caused massive morbidity and mortality because of its antigenic variation. So far, very little is known about the antigenic patterns of the recent H3N2 virus. By systematically mapping the antigenic relationships of H3N2 strains isolated since 2010, we discovered that two groups with obvious antigenic divergence, named SW13 (A/Switzerland/9715293/2013-like strains) and HK14 (A/Hong Kong/5738/2014-like strains), co-circulated during the 2014-2015 winter season. HK14 group co-circulated with SW13 in Europe and the United States during this season, while there were few strains of HK14 in mainland China, where SW13 has dominated since 2012. Furthermore, we found that substitutions near the receptor-binding site on hemagglutinin played an important role in the antigenic variation of both the groups. These findings provide a comprehensive understanding of the recent antigenic evolution of H3N2 virus and will aid in the selection of vaccine strains.

Concepts: Immune system, Evolution, United States, Influenza, Avian influenza, Influenza pandemic, Influenza vaccine, Winter


A novel H7N9 influenza A virus has been discovered as the causative identity of the emerging acute respiratory infection cases in Shanghai, China. This virus has also been identified in cases of infection in the neighboring area Hangzhou City in Zhejiang Province. In this study, epidemiologic, clinical, and virological data from three patients in Hangzhou who were confirmed to be infected by the novel H7N9 influenza A virus were collected and analyzed. Human respiratory specimens and chicken feces from a contacted free market were tested for influenza virus by real-time reverse transcription PCR (RT-PCR) and sequencing. The clinical features of the three cases were similar featured with high fever and severe respiratory symptoms; however, only one of the patients died. A certain degree of diversity was observed among the three Hangzhou viruses sequenced from human samples compared with other reported H7N9 influenza A viruses. The sequences of the novel avian-origin H7N9 influenza viruses from Hangzhou City contained important amino acid substitutions related to human adaptation. One of the Hangzhou viruses had gained a novel amino acid substitution (Q226I) in the receptor binding region of hemagglutinin. More importantly, the virus sequenced from the chicken feces had a 627E substitution in the PB2 protein instead of the mammalian-adapted 627K substitution that was found in the PB2 proteins from the Hangzhou viruses from the three patients. Therefore, the newly-emerging H7N9 virus might be under adaptation pressure that will help it “jump” from avian to human hosts. The significance of these substitutions needs further exploration, with both laboratory experiments and extensive field surveillance.

Concepts: Protein, Microbiology, Virus, Influenza, Influenza vaccine, Influenza A virus, Hangzhou, Zhejiang


Cancer treatment in the past few years has been transformed by a new kind of therapy that targets the immune system instead of the cancer itself to reinvigorate antitumor immunity with astonishing results. However, primary and acquired resistance to this type of treatment, namely immune checkpoint blockade (ICB), continue to counter treatment efficacy. In many cases, resistance has been attributed to defective or chronically enhanced interferon signaling and/or upregulation of alternative immune checkpoints, including T-cell immunoglobulin mucin-3 (Tim-3) and its ligand galactin-9 (Gal-9). In this article, we briefly describe the current knowledge of common checkpoint resistance mechanisms, focusing on the Tim-3/Gal-9 pathway as an alternative checkpoint that holds great promise as another target for ICB.

Concepts: Immune system, Antibody, Innate immune system, Immunology, Natural killer cell, Humoral immunity, Immunity, Interferon