Discover the most talked about and latest scientific content & concepts.

Journal: Science advances


Sea surface temperature (SST) records are subject to potential biases due to changing instrumentation and measurement practices. Significant differences exist between commonly used composite SST reconstructions from the National Oceanic and Atmospheric Administration’s Extended Reconstruction Sea Surface Temperature (ERSST), the Hadley Centre SST data set (HadSST3), and the Japanese Meteorological Agency’s Centennial Observation-Based Estimates of SSTs (COBE-SST) from 2003 to the present. The update from ERSST version 3b to version 4 resulted in an increase in the operational SST trend estimate during the last 19 years from 0.07° to 0.12°C per decade, indicating a higher rate of warming in recent years. We show that ERSST version 4 trends generally agree with largely independent, near-global, and instrumentally homogeneous SST measurements from floating buoys, Argo floats, and radiometer-based satellite measurements that have been developed and deployed during the past two decades. We find a large cooling bias in ERSST version 3b and smaller but significant cooling biases in HadSST3 and COBE-SST from 2003 to the present, with respect to most series examined. These results suggest that reported rates of SST warming in recent years have been underestimated in these three data sets.

Concepts: Gas, Data set, Present, Measurement, Decade, Oceanography, Time, Sea surface temperature


Computer imaging techniques are commonly used to preserve and share readable manuscripts, but capturing writing locked away in ancient, deteriorated documents poses an entirely different challenge. This software pipeline-referred to as “virtual unwrapping”-allows textual artifacts to be read completely and noninvasively. The systematic digital analysis of the extremely fragile En-Gedi scroll (the oldest Pentateuchal scroll in Hebrew outside of the Dead Sea Scrolls) reveals the writing hidden on its untouchable, disintegrating sheets. Our approach for recovering substantial ink-based text from a damaged object results in readable columns at such high quality that serious critical textual analysis can occur. Hence, this work creates a new pathway for subsequent textual discoveries buried within the confines of damaged materials.

Concepts: Codex, Manuscript, Ein Gedi, Torah, Israel, Scroll, Dead Sea, Dead Sea scrolls


For four decades, the inability of nonhuman primates to produce human speech sounds has been claimed to stem from limitations in their vocal tract anatomy, a conclusion based on plaster casts made from the vocal tract of a monkey cadaver. We used x-ray videos to quantify vocal tract dynamics in living macaques during vocalization, facial displays, and feeding. We demonstrate that the macaque vocal tract could easily produce an adequate range of speech sounds to support spoken language, showing that previous techniques based on postmortem samples drastically underestimated primate vocal capabilities. Our findings imply that the evolution of human speech capabilities required neural changes rather than modifications of vocal anatomy. Macaques have a speech-ready vocal tract but lack a speech-ready brain to control it.

Concepts: Japanese Macaque, Cercopithecinae, Barbary Macaque, Language, Monkey, Rhesus Macaque, Macaque, Primate


The risk associated with any climate change impact reflects intensity of natural hazard and level of human vulnerability. Previous work has shown that a wet-bulb temperature of 35°C can be considered an upper limit on human survivability. On the basis of an ensemble of high-resolution climate change simulations, we project that extremes of wet-bulb temperature in South Asia are likely to approach and, in a few locations, exceed this critical threshold by the late 21st century under the business-as-usual scenario of future greenhouse gas emissions. The most intense hazard from extreme future heat waves is concentrated around densely populated agricultural regions of the Ganges and Indus river basins. Climate change, without mitigation, presents a serious and unique risk in South Asia, a region inhabited by about one-fifth of the global human population, due to an unprecedented combination of severe natural hazard and acute vulnerability.

Concepts: Population density, Earth, India, Climate change, Natural gas, Population, Greenhouse gas, World population


The exact timing, route, and process of the initial peopling of the Americas remains uncertain despite much research. Archaeological evidence indicates the presence of humans as far as southern Chile by 14.6 thousand years ago (ka), shortly after the Pleistocene ice sheets blocking access from eastern Beringia began to retreat. Genetic estimates of the timing and route of entry have been constrained by the lack of suitable calibration points and low genetic diversity of Native Americans. We sequenced 92 whole mitochondrial genomes from pre-Columbian South American skeletons dating from 8.6 to 0.5 ka, allowing a detailed, temporally calibrated reconstruction of the peopling of the Americas in a Bayesian coalescent analysis. The data suggest that a small population entered the Americas via a coastal route around 16.0 ka, following previous isolation in eastern Beringia for ~2.4 to 9 thousand years after separation from eastern Siberian populations. Following a rapid movement throughout the Americas, limited gene flow in South America resulted in a marked phylogeographic structure of populations, which persisted through time. All of the ancient mitochondrial lineages detected in this study were absent from modern data sets, suggesting a high extinction rate. To investigate this further, we applied a novel principal components multiple logistic regression test to Bayesian serial coalescent simulations. The analysis supported a scenario in which European colonization caused a substantial loss of pre-Columbian lineages.

Concepts: Brazil, Regression analysis, DNA, Latin America, Indigenous peoples of the Americas, Americas, United States, South America


Establishing the age of the Moon is critical to understanding solar system evolution and the formation of rocky planets, including Earth. However, despite its importance, the age of the Moon has never been accurately determined. We present uranium-lead dating of Apollo 14 zircon fragments that yield highly precise, concordant ages, demonstrating that they are robust against postcrystallization isotopic disturbances. Hafnium isotopic analyses of the same fragments show extremely low initial (176)Hf/(177)Hf ratios corrected for cosmic ray exposure that are near the solar system initial value. Our data indicate differentiation of the lunar crust by 4.51 billion years, indicating the formation of the Moon within the first ~60 million years after the birth of the solar system.

Concepts: Io, Impact crater, Venus, Dwarf planet, Solar System, Sun, Earth, Moon


The negatively charged nitrogen vacancy (NV(-)) center in diamond is the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Although most work so far has focused on the NV(-) optical and spin properties, control of the charge state promises complementary opportunities. One intriguing possibility is the long-term storage of information, a notion we hereby introduce using NV-rich, type 1b diamond. As a proof of principle, we use multicolor optical microscopy to read, write, and reset arbitrary data sets with two-dimensional (2D) binary bit density comparable to present digital-video-disk (DVD) technology. Leveraging on the singular dynamics of NV(-) ionization, we encode information on different planes of the diamond crystal with no cross-talk, hence extending the storage capacity to three dimensions. Furthermore, we correlate the center’s charge state and the nuclear spin polarization of the nitrogen host and show that the latter is robust to a cycle of NV(-) ionization and recharge. In combination with super-resolution microscopy techniques, these observations provide a route toward subdiffraction NV charge control, a regime where the storage capacity could exceed present technologies.

Concepts: Photon, Electric charge, Dimension, Spintronics, Computer data storage, Electron, Microscopy, Fundamental physics concepts


Accurate quantification of the millennial-scale mass balance of the Greenland ice sheet (GrIS) and its contribution to global sea-level rise remain challenging because of sparse in situ observations in key regions. Glacial isostatic adjustment (GIA) is the ongoing response of the solid Earth to ice and ocean load changes occurring since the Last Glacial Maximum (LGM; ~21 thousand years ago) and may be used to constrain the GrIS deglaciation history. We use data from the Greenland Global Positioning System network to directly measure GIA and estimate basin-wide mass changes since the LGM. Unpredicted, large GIA uplift rates of +12 mm/year are found in southeast Greenland. These rates are due to low upper mantle viscosity in the region, from when Greenland passed over the Iceland hot spot about 40 million years ago. This region of concentrated soft rheology has a profound influence on reconstructing the deglaciation history of Greenland. We reevaluate the evolution of the GrIS since LGM and obtain a loss of 1.5-m sea-level equivalent from the northwest and southeast. These same sectors are dominating modern mass loss. We suggest that the present destabilization of these marine-based sectors may increase sea level for centuries to come. Our new deglaciation history and GIA uplift estimates suggest that studies that use the Gravity Recovery and Climate Experiment satellite mission to infer present-day changes in the GrIS may have erroneously corrected for GIA and underestimated the mass loss by about 20 gigatons/year.

Concepts: Post-glacial rebound, Sea level, Ice age, Earth, Greenland ice sheet, Ice sheet, Glaciology, Last glacial period


Human sleep is highly regulated by temperature. Might climate change-through increases in nighttime heat-disrupt sleep in the future? We conduct the inaugural investigation of the relationship between climatic anomalies, reports of insufficient sleep, and projected climate change. Using data from 765,000 U.S. survey respondents from 2002 to 2011, coupled with nighttime temperature data, we show that increases in nighttime temperatures amplify self-reported nights of insufficient sleep. We observe the largest effects during the summer and among both lower-income and elderly respondents. We combine our historical estimates with climate model projections and detail the potential sleep impacts of future climatic changes. Our study represents the largest ever investigation of the relationship between sleep and ambient temperature and provides the first evidence that climate change may disrupt human sleep.

Concepts: Solar variation, Global climate model, Climate model, Weather, Sleep, Change, Climate, Climate change


The subtropical ocean gyres are recognized as great marine accummulation zones of floating plastic debris; however, the possibility of plastic accumulation at polar latitudes has been overlooked because of the lack of nearby pollution sources. In the present study, the Arctic Ocean was extensively sampled for floating plastic debris from the Tara Oceans circumpolar expedition. Although plastic debris was scarce or absent in most of the Arctic waters, it reached high concentrations (hundreds of thousands of pieces per square kilometer) in the northernmost and easternmost areas of the Greenland and Barents seas. The fragmentation and typology of the plastic suggested an abundant presence of aged debris that originated from distant sources. This hypothesis was corroborated by the relatively high ratios of marine surface plastic to local pollution sources. Surface circulation models and field data showed that the poleward branch of the Thermohaline Circulation transfers floating debris from the North Atlantic to the Greenland and Barents seas, which would be a dead end for this plastic conveyor belt. Given the limited surface transport of the plastic that accumulated here and the mechanisms acting for the downward transport, the seafloor beneath this Arctic sector is hypothesized as an important sink of plastic debris.

Concepts: Marine debris, Arctic, Pacific Ocean, Ocean, Earth, Antarctica, Atlantic Ocean, Arctic Ocean