Discover the most talked about and latest scientific content & concepts.

Journal: Proceedings. Biological sciences / The Royal Society


Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity.

Concepts: Poverty, Culture, Peak oil, Society, Globalization, Civilization, Sociocultural evolution, John Zerzan


The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

Concepts: Drug addiction, Motivation, Psychiatry, Madagascar, Stretching, Stereotypy


Spiders are an important animal group, with a long history. Details of their origins remain limited, with little knowledge of their stem group, and no insights into the sequence of character acquisition during spider evolution. We describe a new fossil arachnid,Idmonarachne brasierigen. et sp. nov. from the Late Carboniferous (Stephanian,ca305-299 Ma) of Montceau-les-Mines, France. It is three-dimensionally preserved within a siderite concretion, allowing both laboratory- and synchrotron-based phase-contrast computed tomography reconstruction. The latter is a first for siderite-hosted fossils and has allowed us to investigate fine anatomical details. Although distinctly spider-like in habitus, this remarkable fossil lacks a key diagnostic character of Araneae: spinnerets on the underside of the opisthosoma. It also lacks a flagelliform telson found in the recently recognized, spider-related, Devonian-Permian Uraraneida. Cladistic analysis resolves our new fossil as sister group to the spiders: the spider stem-group comprises the uraraneids andI. brasieri While we are unable to demonstrate the presence of spigots in this fossil, the recovered phylogeny suggests the earliest character to evolve on the spider stem-group is the secretion of silk. This would have been followed by the loss of a flagelliform telson, and then the ability to spin silk using spinnerets. This last innovation defines the true spiders, significantly post-dates the origins of silk, and may be a key to the group’s success. The Montceau-les-Mines locality has previously yielded a mesothele spider (with spinnerets). Evidently, Late Palaeozoic spiders lived alongside Palaeozoic arachnid grades which approached the spider condition, but did not express the full suite of crown-group autapomorphies.

Concepts: Arthropod, Phylogenetics, Clade, Phylum, Arachnid, Spider, Chelicerata, Tarantula


The fossil record of centrosaurine ceratopsids is largely restricted to the northern region of western North America (Alberta, Montana and Alaska). Exceptions consist of single taxa from Utah (Diabloceratops) and China (Sinoceratops), plus otherwise fragmentary remains from the southern Western Interior of North America. Here, we describe a remarkable new taxon, Nasutoceratops titusi n. gen. et sp., from the late Campanian Kaiparowits Formation of Utah, represented by multiple specimens, including a nearly complete skull and partial postcranial skeleton. Autapomorphies include an enlarged narial region, pneumatic nasal ornamentation, abbreviated snout and elongate, rostrolaterally directed supraorbital horncores. The subrectangular parietosquamosal frill is relatively unadorned and broadest in the mid-region. A phylogenetic analysis indicates that Nasutoceratops is the sister taxon to Avaceratops, and that a previously unknown subclade of centrosaurines branched off early in the group’s history and persisted for several million years during the late Campanian. As the first well-represented southern centrosaurine comparable in age to the bulk of northern forms, Nasutoceratops provides strong support for the provincialism hypothesis, which posits that Laramidia-the western landmass formed by inundation of the central region of North America by the Western Interior Seaway-hosted at least two coeval dinosaur communities for over a million years of late Campanian time.

Concepts: United States, Phylogenetics, Cladistics, North America, Cretaceous, Fossil, Dinosaur, Ceratopsidae


Collaboration can provide benefits to the individual and the group across a variety of contexts. Even in simple perceptual tasks, the aggregation of individuals' personal information can enable enhanced group decision-making. However, in certain circumstances such collaboration can worsen performance, or even expose an individual to exploitation in economic tasks, and therefore a balance needs to be struck between a collaborative and a more egocentric disposition. Neurohumoral agents such as oxytocin are known to promote collaborative behaviours in economic tasks, but whether there are opponent agents, and whether these might even affect information aggregation without an economic component, is unknown. Here, we show that an androgen hormone, testosterone, acts as such an agent. Testosterone causally disrupted collaborative decision-making in a perceptual decision task, markedly reducing performance benefit individuals accrued from collaboration while leaving individual decision-making ability unaffected. This effect emerged because testosterone engendered more egocentric choices, manifest in an overweighting of one’s own relative to others' judgements during joint decision-making. Our findings show that the biological control of social behaviour is dynamically regulated not only by modulators promoting, but also by those diminishing a propensity to collaborate.

Concepts: Psychology, Decision making, Decision theory, Androgen, Human behavior, Collaboration


Depression is a major public health concern worldwide. There is evidence that social support and befriending influence mental health, and an improved understanding of the social processes that drive depression has the potential to bring significant public health benefits. We investigate transmission of mood on a social network of adolescents, allowing flexibility in our model by making no prior assumption as to whether it is low mood or healthy mood that spreads. Here, we show that while depression does not spread, healthy mood among friends is associated with significantly reduced risk of developing and increased chance of recovering from depression. We found that this spreading of healthy mood can be captured using a non-linear complex contagion model. Having sufficient friends with healthy mood can halve the probability of developing, or double the probability of recovering from, depression over a 6-12-month period on an adolescent social network. Our results suggest that promotion of friendship between adolescents can reduce both incidence and prevalence of depression.

Concepts: Health care, Public health, Health, Epidemiology, Sociology, Network theory, Spread


Determining the relationships among the major groups of cellular life is important for understanding the evolution of biological diversity, but is difficult given the enormous time spans involved. In the textbook ‘three domains’ tree based on informational genes, eukaryotes and Archaea share a common ancestor to the exclusion of Bacteria. However, some phylogenetic analyses of the same data have placed eukaryotes within the Archaea, as the nearest relatives of different archaeal lineages. We compared the support for these competing hypotheses using sophisticated phylogenetic methods and an improved sampling of archaeal biodiversity. We also employed both new and existing tests of phylogenetic congruence to explore the level of uncertainty and conflict in the data. Our analyses suggested that much of the observed incongruence is weakly supported or associated with poorly fitting evolutionary models. All of our phylogenetic analyses, whether on small subunit and large subunit ribosomal RNA or concatenated protein-coding genes, recovered a monophyletic group containing eukaryotes and the TACK archaeal superphylum comprising the Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota. Hence, while our results provide no support for the iconic three-domain tree of life, they are consistent with an extended eocyte hypothesis whereby vital components of the eukaryotic nuclear lineage originated from within the archaeal radiation.

Concepts: Gene, Archaea, Bacteria, Evolution, Life, Species, Ribosome, Prokaryote


Few at-sea behavioural data exist for oceanic-stage neonate sea turtles, a life-stage commonly referred to as the sea turtle ‘lost years’. Historically, the long-term tracking of small, fast-growing organisms in the open ocean was logistically or technologically impossible. Here, we provide the first long-term satellite tracks of neonate sea turtles. Loggerheads (Caretta caretta) were remotely tracked in the Atlantic Ocean using small solar-powered satellite transmitters. We show that oceanic-stage turtles (i) rarely travel in Continental Shelf waters, (ii) frequently depart the currents associated with the North Atlantic Subtropical Gyre, (iii) travel quickly when in Gyre currents, and (iv) select sea surface habitats that are likely to provide a thermal benefit or refuge to young sea turtles, supporting growth, foraging and survival. Our satellite tracks help define Atlantic loggerhead nursery grounds and early loggerhead habitat use, allowing us to re-examine sea turtle ‘lost years’ paradigms.

Concepts: Mediterranean Sea, Atlantic Ocean, Baltic Sea, Ocean, Marine debris, Sea turtle, Loggerhead Sea Turtle, Sargasso Sea


Simultaneous infection by multiple parasite species (viruses, bacteria, helminths, protozoa or fungi) is commonplace. Most reports show co-infected humans to have worse health than those with single infections. However, we have little understanding of how co-infecting parasites interact within human hosts. We used data from over 300 published studies to construct a network that offers the first broad indications of how groups of co-infecting parasites tend to interact. The network had three levels comprising parasites, the resources they consume and the immune responses they elicit, connected by potential, observed and experimentally proved links. Pairs of parasite species had most potential to interact indirectly through shared resources, rather than through immune responses or other parasites. In addition, the network comprised 10 tightly knit groups, eight of which were associated with particular body parts, and seven of which were dominated by parasite-resource links. Reported co-infection in humans is therefore structured by physical location within the body, with bottom-up, resource-mediated processes most often influencing how, where and which co-infecting parasites interact. The many indirect interactions show how treating an infection could affect other infections in co-infected patients, but the compartmentalized structure of the network will limit how far these indirect effects are likely to spread.

Concepts: Immune system, Inflammation, Infectious disease, Bacteria, Infection, Fungus, Parasitism, Antiseptic


Agricultural land use results in direct biodiversity decline through loss of natural habitat, but may also cause indirect cross-habitat effects on conservation areas. We conducted three landscape-scale field studies on 67 sites to test the hypothesis that mass flowering of oilseed rape (Brassica napus) results in a transient dilution of bees in crop fields, and in increased competition between crop plants and grassland plants for pollinators. Abundances of bumble-bees, which are the main pollinators of the grassland plant Primula veris, but also pollinate oilseed rape (OSR), decreased with increasing amount of OSR. This landscape-scale dilution affected bumble-bee abundances strongly in OSR fields and marginally in grasslands, where bumble-bee abundances were generally low at the time of Primula flowering. Seed set of Primula veris, which flowers during OSR bloom, was reduced by 20 per cent when the amount of OSR within 1 km radius increased from 0 to 15 per cent. Hence, the current expansion of bee-attractive biofuel crops results in transient dilution of crop pollinators, which means an increased competition for pollinators between crops and wild plants. In conclusion, mass-flowering crops potentially threaten fitness of concurrently flowering wild plants in conservation areas, despite the fact that, in the long run, mass-flowering crops can enhance abundances of generalist pollinators and their pollination service.

Concepts: Agriculture, Pollination, Brassica, Flower, Pollinator decline, Pollination syndrome, Bumblebee, Pollinator