SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Polymers

130

This study looked into the synthesis and study of Dextrane Sulfate-Doxorubicin Nanoparticles (DS-Dox NP) that are sensitive to amylase and show anticoagulant properties. The particles were obtained by the method of solvent replacement. They had a size of 305 ± 58 nm, with a mass ratio of DS:Dox = 3.3:1. On heating to 37 °C, the release of Dox from the particles was equal to 24.2% of the drug contained. In the presence of amylase, this ratio had increased to 42.1%. The study of the biological activity of the particles included an assessment of the cytotoxicity and the effect on hemostasis and antitumor activity. In a study of cytotoxicity on the L929 cell culture, it was found that the synthesized particles had less toxicity, compared to free doxorubicin. However, in the presence of amylase, their cytotoxicity was higher than the traditional forms of the drug. In a study of the effect of DS-Dox NP on hemostasis, it was found that the particles had a heparin-like anticoagulant effect. Antitumor activity was studied on the model of ascitic Zaidel hepatoma in rats. The frequency of complete cure in animals treated with the DS-Dox nanoparticles was higher, compared to animals receiving the traditional form of the drug.

4

The effect of a range of synthetic charged polymers on alpha-synuclein aggregation and amyloid formation was tested. Sulfated aromatic polymers, poly(styrene sulfonate) and poly(anethole sulfonate), have been found to suppress the fibril formation. In this case, small soluble complexes, which do not bind with thioflavin T, have been formed in contrast to the large stick-type fibrils of free alpha-synuclein. Sulfated polysaccharide (dextran sulfate), as well as sulfated vinylic polymer (poly(vinyl sulfate)) and polycarboxylate (poly(methacrylic acid)), enhanced amyloid aggregation. Conversely, pyridinium polycation, poly(N-ethylvinylpyridinium), switched the mechanism of alpha-synuclein aggregation from amyloidogenic to amorphous, which resulted in the formation of large amorphous aggregates that do not bind with thioflavin T. The obtained results are relevant as a model of charged macromolecules influence on amyloidosis development in humans. In addition, these results may be helpful in searching for new approaches for synucleinopathies treatment with the use of natural polymers.

2

Proton exchange membranes (PEMs) play a pivotal role in fuel cells; conducting protons from the anode to the cathode within the cell’s membrane electrode assembles (MEA) separates the reactant fuels and prevents electrons from passing through. High proton conductivity is the most important characteristic of the PEM, as this contributes to the performance and efficiency of the fuel cell. However, it is also important to take into account the membrane’s durability to ensure that it canmaintain itsperformance under the actual fuel cell’s operating conditions and serve a long lifetime. The current state-of-the-art Nafion membranes are limited due to their high cost, loss of conductivity at elevated temperatures due to dehydration, and fuel crossover. Alternatives to Nafion have become a well-researched topic in recent years. Aromatic-based membranes where the polymer chains are linked together by aromatic rings, alongside varying numbers of ether, ketone, or sulfone functionalities, imide, or benzimidazoles in their structures, are one of the alternatives that show great potential as PEMs due totheir electrochemical, mechanical, and thermal strengths. Membranes based on these polymers, such as poly(aryl ether ketones) (PAEKs) and polyimides (PIs), however, lack a sufficient level of proton conductivity and durability to be practical for use in fuel cells. Therefore, membrane modifications are necessary to overcome their drawbacks. This paper reviews the challenges associated with different types of aromatic-based PEMs, plus the recent approaches that have been adopted to enhance their properties and performance.

2

Recently, it has been shown that the reaction mechanism in self-healing diphenyl dichalcogenide-based polymers involves the formation of sulfenyl and selenyl radicals. These radicals are able to attack a neighbouring dichalcogenide bond via a three-membered transition state, leading to the interchange of chalcogen atoms. Hence, the chain mobility is crucial for the exchange reaction to take place. In this work, molecular dynamics simulations have been performed in a set of disulfide- and diselenide-based materials to analyze the effect of the molecular structure in the chain mobility. First of all, a validation of the computational protocol has been carried out, and different simulation parameters like initial guess, length of the molecular chains, size of the simulation box and simulation time, have been evaluated. This protocol has been used to study the chain mobility and also the self-healing capacity, which depends on the probability to generate radicals ( ρ ), the barrier of the exchange reaction ( Δ G ) and the mobility of the chains ( ω ). The first two parameters have been obtained in previous quantum chemical calculations on the systems under study in this work. After analyzing the self-healing capacity, it is concluded that aromatic diselenides (PD-SeSe) are the best candidates among those studied to show self-healing, due to lower reaction barriers and larger ω values.

2

Gelatin (G) was extracted from the skin of Atlantic cod at different pH of the aqueous phase (pH 3, 4, 5, 8 and 9) and at a temperature of 50 ± 1 °C. The yield of gelatin (G3, G4, G5, G8, and G9, respectively) was 49-55% of the dry raw material. The influence of extraction pH on the physicochemical and functional properties of gelatin was studied. Sample G5 was characterized by higher protein content (92.8%) while lower protein content was obtained for sample G3 (86.5%) extracted under more aggressive conditions. Analysis of the molecular weight distribution showed the presence of α- and β-chains as major components; the molecular weight of the samples ranged between 130 and 150 kDa, with sample G5 having the highest molecular weight. IR spectra of all samples had absorption bands characteristic of fish gelatin. The study of the secondary structure demonstrated higher amounts of ordered triple collagen-like helices for G5 extracted under mild conditions. Accordingly, sample G5 formed gels with high values for the storage modulus and gelling and melting temperatures, which decrease as pH changes into acidic or alkaline regions. In addition, the differential scanning calorimetry data showed that G5 had a higher glass transition temperature and melting enthalpy. Thus, cod skin is an excellent source of gelatin with the necessary physicochemical and functional properties, depending on the appropriate choice of aqueous phase pH for the extraction.

1

We report the study of the formation of Laser Induced Periodic Surface Structures (LIPSS), with UV femtosecond laser pulses (λ = 265 nm), in free-standing films of both Poly(trimethylene terephthalate) (PTT) and the composite PTT/tungsten disulfide inorganic nanotubes (PTT-WS2). We characterized the range of fluences and number of pulses necessary to induce LIPSS formation and measured the topography of the samples by Atomic Force Microscopy, the change in surface energy and contact angle using the sessile drop technique, and the modification in both Young’s modulus and adhesion force values with Peak Force-Quantitative Nanomechanical Mapping. LIPSS appeared parallel to the laser polarization with a period close to its wavelength in a narrow fluence and number of pulses regime, with PTT-WS2 needing slightly larger fluence than raw PTT due to its higher crystallinity and heat diffusion. Little change was found in the total surface energy of the samples, but there was a radical increase in the negative polar component (γ-). Besides, we measured small variations in the samples Young’s modulus after LIPSS formation whereas adhesion is reduced by a factor of four. This reduction, as well as the increase in γ-, is a result of the modification of the surface chemistry, in particular a slight oxidation, during irradiation.

1

The first successful direct 3D printing, or additive manufacturing (AM), of heat-cured silicone meniscal implants, using biocompatible and bio-implantable silicone resins is reported. Silicone implants have conventionally been manufactured by indirect silicone casting and molding methods which are expensive and time-consuming. A novel custom-made heat-curing extrusion-based silicone 3D printer which is capable of directly 3D printing medical silicone implants is introduced. The rheological study of silicone resins and the optimization of critical process parameters are described in detail. The surface and cross-sectional morphologies of the printed silicone meniscus implant were also included. A time-lapsed simulation study of the heated silicone resin within the nozzle using computational fluid dynamics (CFD) was done and the results obtained closely resembled real time 3D printing. Solidworks one-convection model simulation, when compared to the on-off model, more closely correlated with the actual probed temperature. Finally, comparative mechanical study between 3D printed and heat-molded meniscus is conducted. The novel 3D printing process opens up the opportunities for rapid 3D printing of various customizable medical silicone implants and devices for patients and fills the current gap in the additive manufacturing industry.

1

Metals used for food canning such as aluminum (Al), chromium-coated tin-free steel (TFS) and electrochemically tin-plated steel (ETP) were coated with a 2-3-µm-thick layer of polyaleuritate, the polyester resulting from the self-esterification of naturally-occurring 9,10,16-trihydroxyhexadecanoic (aleuritic) acid. The kinetic of the esterification was studied by FTIR spectroscopy; additionally, the catalytic activity of the surface layer of chromium oxide on TFS and, in particular, of tin oxide on ETP, was established. The texture, gloss and wettability of coatings were characterized by AFM, UV-Vis total reflectance and static water contact angle (WCA) measurements. The resistance of the coatings to solvents was also determined and related to the fraction of unreacted polyhydroxyacid. The occurrence of an oxidative diol cleavage reaction upon preparation in air induced a structural modification of the polyaleuritate layer and conferred upon it thermal stability and resistance to solvents. The promoting effect of the tin oxide layer in such an oxidative cleavage process fosters the potential of this methodology for the design of effective long-chain polyhydroxyester coatings on ETP.

1

In this work, we investigated the functionalization of polyketone 30 (PK30) with glycyl-glycine (Gly-Gly) via the Paal-Knorr reaction with the aim of homogenously dispersing two types of reduced graphene oxide (rGO, i.e., lrGO and hrGO, the former characterized by a lower degree of reduction in comparison to the latter) by non-covalent interactions. The functional PK30-Gly-Gly polymer was effective in preparing composites with homogeneously distributed rGO characterized by an effective percolation threshold at 5 wt. %. All the composites showed a typical semiconductive behavior and stable electrical response after several heating/cooling cycles from 30 to 115 °C. Composites made by hrGO displayed the same resistive behaviour even if flanked by a considerable improvement on conductivity, in agreement with the more reduced rGO content. Interestingly, no permanent percolative network was shown by the composite with 4 wt. % of lrGO at temperatures higher than 45 °C. This material can be used as an ON-OFF temperature sensor and could find interesting applications as sensing material in soft robotics applications.

1

Lithium metal anodes have been pursued for decades as a way to significantly increase the energy density of lithium-ion batteries. However, safety risks caused by flammable liquid electrolytes and short circuits due to lithium dendrite formation during cell cycling have so far prevented the use of lithium metal in commercial batteries. Solid polymer electrolytes (SPEs) offer a potential solution if their mechanical properties and ionic conductivity can be simultaneously engineered. Here, we introduce a family of SPEs that are scalable and easy to prepare with a photopolymerization process, synthesized from amphiphilic acrylic polymer conetworks based on poly(ethylene glycol), 2-hydroxy-ethylacrylate, norbornyl acrylate, and either lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or a single-ion polymethacrylate as lithium-ion source. Several conetworks were synthesized and cycled, and their ionic conductivity, mechanical properties, and lithium transference number were characterized. A single-ion-conducting polymer electrolyte shows the best compromise between the different properties and extends the calendar life of the cell.