Discover the most talked about and latest scientific content & concepts.

Journal: PLoS computational biology


There are many situations where relatives interact while at the same time there is genetic polymorphism in traits influencing survival and reproduction. Examples include cheater-cooperator polymorphism and polymorphic microbial pathogens. Environmental heterogeneity, favoring different traits in nearby habitats, with dispersal between them, is one general reason to expect polymorphism. Currently, there is no formal framework of social evolution that encompasses genetic polymorphism. We develop such a framework, thus integrating theories of social evolution into the evolutionary ecology of heterogeneous environments. We allow for adaptively maintained genetic polymorphism by applying the concept of genetic cues. We analyze a model of social evolution in a two-habitat situation with limited dispersal between habitats, in which the average relatedness at the time of helping and other benefits of helping can differ between habitats. An important result from the analysis is that alleles at a polymorphic locus play the role of genetic cues, in the sense that the presence of a cue allele contains statistical information for an organism about its current environment, including information about relatedness. We show that epistatic modifiers of the cue polymorphism can evolve to make optimal use of the information in the genetic cue, in analogy with a Bayesian decision maker. Another important result is that the genetic linkage between a cue locus and modifier loci influences the evolutionary interest of modifiers, with tighter linkage leading to greater divergence between social traits induced by different cue alleles, and this can be understood in terms of genetic conflict.

Concepts: Gene, Genetics, Bacteria, Genotype, Allele, Evolution, Organism, Mendelian inheritance


Online learning initiatives over the past decade have become increasingly comprehensive in their selection of courses and sophisticated in their presentation, culminating in the recent announcement of a number of consortium and startup activities that promise to make a university education on the internet, free of charge, a real possibility. At this pivotal moment it is appropriate to explore the potential for obtaining comprehensive bioinformatics training with currently existing free video resources. This article presents such a bioinformatics curriculum in the form of a virtual course catalog, together with editorial commentary, and an assessment of strengths, weaknesses, and likely future directions for open online learning in this field.

Concepts: Education, Educational psychology, College, Internet, Course, Curricula, Course catalog


What are you working on? You have certainly been asked that question many times, whether it be at a Saturday night party, during a discussion with your neighbors, or at a family gathering. Communicating with a lay audience about scientific subjects and making them attractive is a difficult task. But difficult or not, you will have to do it for many years, not only with your family and friends, but also with your colleagues and collaborators. So, better learn now! Although not usually taught, the ability to explain your work to others is an essential skill in science, where communication plays a key role. Using some examples of the French Regional Student Group activities, we discuss here (i) why it is important to have such communication skills, (ii) how you can get involved in these activities by using existing resources or working with people who have previous experience, and (iii) what you get out of this amazing experience. We aim to motivate you and provide you with tips and ideas to get involved in promoting scientific activities while getting all the benefits.

Concepts: Skill, Communication, Graphic communication


Demographics of the science, technology, engineering, and mathematics (STEM) workforce and student body in the US and Europe continue to show severe underrepresentation of Black, Indigenous, and people of color (BIPOC). Among the documented causes of the persistent lack of diversity in STEM are bias, discrimination, and harassment of members of underrepresented minority groups (URMs). These issues persist due to continued marginalization, power imbalances, and lack of adequate policies against misconduct in academic and other scientific institutions. All scientists can play important roles in reversing this trend by shifting the culture of academic workplaces to intentionally implement equitable and inclusive policies, set norms for acceptable workplace conduct, and provide opportunities for mentorship and networking. As scientists are increasingly acknowledging the lack of racial and ethnic diversity in science, there is a need for clear direction on how to take antiracist action. Here we present 10 rules to help labs develop antiracists policies and action in an effort to promote racial and ethnic diversity, equity, and inclusion in science.


The interaction environment of a protein in a cellular network is important in defining the role that the protein plays in the system as a whole, and thus its potential suitability as a drug target. Despite the importance of the network environment, it is neglected during target selection for drug discovery. Here, we present the first systematic, comprehensive computational analysis of topological, community and graphical network parameters of the human interactome and identify discriminatory network patterns that strongly distinguish drug targets from the interactome as a whole. Importantly, we identify striking differences in the network behavior of targets of cancer drugs versus targets from other therapeutic areas and explore how they may relate to successful drug combinations to overcome acquired resistance to cancer drugs. We develop, computationally validate and provide the first public domain predictive algorithm for identifying druggable neighborhoods based on network parameters. We also make available full predictions for 13,345 proteins to aid target selection for drug discovery. All target predictions are available through Underlying data and tools are available at

Concepts: Pharmacology, Bioinformatics, Cellular network


Movement interactions and the underlying social structure in groups have relevance across many social-living species. Collective motion of groups could be based on an “egalitarian” decision system, but in practice it is often influenced by underlying social network structures and by individual characteristics. We investigated whether dominance rank and personality traits are linked to leader and follower roles during joint motion of family dogs. We obtained high-resolution spatio-temporal GPS trajectory data (823,148 data points) from six dogs belonging to the same household and their owner during 14 30-40 min unleashed walks. We identified several features of the dogs' paths (e.g., running speed or distance from the owner) which are characteristic of a given dog. A directional correlation analysis quantifies interactions between pairs of dogs that run loops jointly. We found that dogs play the role of the leader about 50-85% of the time, i.e. the leader and follower roles in a given pair are dynamically interchangable. However, on a longer timescale tendencies to lead differ consistently. The network constructed from these loose leader-follower relations is hierarchical, and the dogs' positions in the network correlates with the age, dominance rank, trainability, controllability, and aggression measures derived from personality questionnaires. We demonstrated the possibility of determining dominance rank and personality traits of an individual based only on its logged movement data. The collective motion of dogs is influenced by underlying social network structures and by characteristics such as personality differences. Our findings could pave the way for automated animal personality and human social interaction measurements.

Concepts: Structure, Hierarchy, Sociology, Agency, Big Five personality traits, Social network, Characteristic, Trait


When we look at the rapid growth of scientific databases on the Internet in the past decade, we tend to take the accessibility and provenance of the data for granted. As we see a future of increased database integration, the licensing of the data may be a hurdle that hampers progress and usability. We have formulated four rules for licensing data for open drug discovery, which we propose as a starting point for consideration by databases and for their ultimate adoption. This work could also be extended to the computational models derived from such data. We suggest that scientists in the future will need to consider data licensing before they embark upon re-using such content in databases they construct themselves.

Concepts: Time, Mathematics, Database, Future, Science, Past, Need, Accessibility


Timbre is the attribute of sound that allows humans and other animals to distinguish among different sound sources. Studies based on psychophysical judgments of musical timbre, ecological analyses of sound’s physical characteristics as well as machine learning approaches have all suggested that timbre is a multifaceted attribute that invokes both spectral and temporal sound features. Here, we explored the neural underpinnings of musical timbre. We used a neuro-computational framework based on spectro-temporal receptive fields, recorded from over a thousand neurons in the mammalian primary auditory cortex as well as from simulated cortical neurons, augmented with a nonlinear classifier. The model was able to perform robust instrument classification irrespective of pitch and playing style, with an accuracy of 98.7%. Using the same front end, the model was also able to reproduce perceptual distance judgments between timbres as perceived by human listeners. The study demonstrates that joint spectro-temporal features, such as those observed in the mammalian primary auditory cortex, are critical to provide the rich-enough representation necessary to account for perceptual judgments of timbre by human listeners, as well as recognition of musical instruments.

Concepts: Brain, Temporal lobe, Cerebrum, Auditory system, Sound, Music, Musical instrument, Timbre


The coronavirus disease COVID-19 constitutes the most severe pandemic of the last decades having caused more than 1 million deaths worldwide. The SARS-CoV-2 virus recognizes the angiotensin converting enzyme 2 (ACE2) on the surface of human cells through its spike protein. It has been reported that the coronavirus can mildly infect cats, and ferrets, and perhaps dogs while not pigs, mice, chicken and ducks. Differences in viral infectivity among different species or individuals could be due to amino acid differences at key positions of the host proteins that interact with the virus, the immune response, expression levels of host proteins and translation efficiency of the viral proteins among other factors. Here, first we have addressed the importance that sequence variants of different animal species, human individuals and virus isolates have on the interaction between the RBD domain of the SARS-CoV-2 spike S protein and human angiotensin converting enzyme 2 (ACE2). Second, we have looked at viral translation efficiency by using the tRNA adaptation index. We find that integration of both interaction energy with ACE2 and translational efficiency explains animal infectivity. Humans are the top species in which SARS-CoV-2 is both efficiently translated as well as optimally interacting with ACE2. We have found some viral mutations that increase affinity for hACE and some hACE2 variants affecting ACE2 stability and virus binding. These variants suggest that different sensitivities to coronavirus infection in humans could arise in some cases from allelic variability affecting ACE2 stability and virus binding.


An explanatory computational model is developed of the contiguous areas of retinal capillary loss which play a large role in diabetic maculapathy and diabetic retinal neovascularization. Strictly random leukocyte mediated capillary occlusion cannot explain the occurrence of large contiguous areas of retinal ischemia. Therefore occlusion of an individual capillary must increase the probability of occlusion of surrounding capillaries. A retinal perifoveal vascular sector as well as a peripheral retinal capillary network and a deleted hexagonal capillary network are modelled using Compucell3D. The perifoveal modelling produces a pattern of spreading capillary loss with associated macular edema. In the peripheral network, spreading ischemia results from the progressive loss of the ladder capillaries which connect peripheral arterioles and venules. System blood flow was elevated in the macular model before a later reduction in flow in cases with progression of capillary occlusions. Simulations differing only in initial vascular network structures but with identical dynamics for oxygen, growth factors and vascular occlusions, replicate key clinical observations of ischemia and macular edema in the posterior pole and ischemia in the retinal periphery. The simulation results also seem consistent with quantitative data on macular blood flow and qualitative data on venous oxygenation. One computational model applied to distinct capillary networks in different retinal regions yielded results comparable to clinical observations in those regions.

Concepts: Scientific method, Blood, Blood vessel, Capillary, Cardiovascular system, Quantitative research, Arteriole, Venule