Discover the most talked about and latest scientific content & concepts.

Journal: Nutrition & metabolism


BACKGROUND: The pattern of protein intake following exercise may impact whole-body protein turnover and net protein retention. We determined the effects of different protein feeding strategies on protein metabolism in resistance-trained young men. METHODS: Participants were randomly assigned to ingest either 80g of whey protein as 8x10g every 1.5h (PULSE; n=8), 4x20g every 3h (intermediate, INT; n=7), or 2x40g every 6h (BOLUS; n=8) after an acute bout of bilateral knee extension exercise (4x10 repetitions at 80% maximal strength). Whole-body protein turnover (Q), synthesis (S), breakdown (B), and net balance (NB) were measured throughout 12h of recovery by a bolus ingestion of [15N]glycine with urinary [15N]ammonia enrichment as the collected end-product. RESULTS: PULSE Q rates were greater than BOLUS (~19%, P<0.05) with a trend towards being greater than INT (~9%, P=0.08). Rates of S were 32% and 19% greater and rates of B were 51% and 57% greater for PULSE as compared to INT and BOLUS, respectively (P<0.05), with no difference between INT and BOLUS. There were no statistical differences in NB between groups (P=0.23); however, magnitude-based inferential statistics revealed likely small (mean effect+/-90%CI; 0.59+/-0.87) and moderate (0.80+/-0.91) increases in NB for PULSE and INT compared to BOLUS and possible small increase (0.42+/-1.00) for INT vs. PULSE. CONCLUSION: We conclude that the pattern of ingested protein, and not only the total daily amount, can impact whole-body protein metabolism. Individuals aiming to maximize NB would likely benefit from repeated ingestion of moderate amounts of protein (~20g) at regular intervals (~3h) throughout the day.

Concepts: Metabolism, Nutrition, Eating, Ingestion, Coprophagia, Digestive system, Mouth, Whey protein


Protein supplementation during resistance exercise training augments hypertrophic gains. Protein ingestion and the resultant hyperaminoacidemia provides the building blocks (indispensable amino acids - IAA) for, and also triggers an increase in, muscle protein synthesis (MPS), suppression of muscle protein breakdown (MPB), and net positive protein balance (i.e., MPS > MPB). The key amino acid triggering the rise in MPS is leucine, which stimulates the mechanistic target of rapamycin complex-1, a key signalling protein, and triggers a rise in MPS. As such, ingested proteins with a high leucine content would be advantageous in triggering a rise in MPS. Thus, protein quality (reflected in IAA content and protein digestibility) has an impact on changes in MPS and could ultimately affect skeletal muscle mass. Protein quality has been measured by the protein digestibility-corrected amino acid score (PDCAAS); however, the digestible indispensable amino acid score (DIAAS) has been recommended as a better method for protein quality scoring. Under DIAAS there is the recognition that amino acids are individual nutrients and that protein quality is contingent on IAA content and ileal (as opposed to fecal) digestibility. Differences in protein quality may have important ramifications for exercise-induced changes in muscle mass gains made with resistance exercise as well as muscle remodelling. Thus, the purpose of this review is a critical appraisal of studies examining the effects of protein quality in supplementation on changes in muscle mass and strength as well as body composition during resistance training.

Concepts: Protein, Amino acid, Acid, Amine, Metabolism, Nutrition, Muscle, Essential amino acid


The article entitled “Monosodium glutamate (MSG) intake is associated with the prevalence of metabolic syndrome in a rural Thai population”, concluded that higher amounts of individual’s MSG consumption are associated with the risk of having the metabolic syndrome and being overweight independent of other major determinants. However, this epidemiological study is the only study indicating such a relationship between MSG intake and the prevalence of metabolic syndrome and there is no direct supporting evidence for a causal relationship between MSG intake and prevalence of metabolic syndrome. This study does not indicate that MSG causes metabolic syndrome. Furthermore, there are several questionable points concerning study methods. Further carefully designed studies taking into account all glutamate sources are necessary to demonstrate the relationship between overweight, metabolic syndrome, MSG intake and umami sensitivity.

Concepts: Amino acid, Glutamic acid, Excitotoxicity, Soy sauce, Monosodium glutamate, Umami, Flavour enhancer, Disodium glutamate



We examined the methodological approach to the assessment of monosodium glutamate intake. The high carbohydrate and low fat consumption characteristic of this study population would be conducive to the development of metabolic syndrome. However, anomalies in the assessment of dietary information limits conclusion to a causal link of monosodium glutamate to metabolic syndrome and overweight because the study lacks data on the main dietary patterns of consumption. Given the current paucity of data from human studies on monosodium glutamate intake and risk, more studies with robust methodology are required to assess causal links to disease.

Concepts: Amino acid, Nutrition, Glutamic acid, Excitotoxicity, Monosodium glutamate, Umami, Flavour enhancer, Disodium glutamate


The ketogenic diet (KD) is a very low-carbohydrate, high-fat and adequate-protein diet that without limiting calories induces different metabolic adaptations, eg, increased levels of circulating ketone bodies and a shift to lipid metabolism. Our objective was to assess the impact of a 6-week non-energy-restricted KD in healthy adults beyond cohorts of athletes on physical performance, body composition, and blood parameters.

Concepts: Protein, Metabolism, Nutrition, Fat, Lipid, Ketone bodies, Carbohydrate, Ketosis


A shift from respiration to fermentation is a common metabolic hallmark of cancer cells. As a result, glucose and glutamine become the prime fuels for driving the dysregulated growth of tumors. The simultaneous occurrence of “Press-Pulse” disturbances was considered the mechanism responsible for reduction of organic populations during prior evolutionary epochs. Press disturbances produce chronic stress, while pulse disturbances produce acute stress on populations. It was only when both disturbances coincide that population reduction occurred.

Concepts: Medicine, Carbon dioxide, Cancer, Bacteria, Adenosine triphosphate, Enzyme, Population, Cellular respiration


BACKGROUND: The ability of an intermittent fasting (IF)-calorie restriction (CR) regimen (with or without liquid meals) to modulate adipokines in a way that is protective against coronary heart disease (CHD) has yet to be tested. OBJECTIVE: Accordingly, we examined the effects of an IFCR diet on adipokine profile, body composition, and markers of CHD risk in obese women. METHODS: Subjects (n = 54) were randomized to either the IFCR-liquid (IFCR-L) or IFCR-food based (IFCR-F) diet for 10 weeks. RESULTS: Greater decreases in body weight and waist circumference were noted in the IFCR-L group (4 +/- 1 kg; 6 +/- 1 cm) versus the IFCR-F group (3 +/- 1 kg; 4 +/- 1 cm). Similar reductions (P < 0.0001) in fat mass were demonstrated in the IFCR-L (3 +/- 1 kg) and IFCR-F group (2 +/- 1 kg). Reductions in total and LDL cholesterol levels were greater (P = 0.04) in the IFCR-L (19 +/- 10%; 20 +/- 9%, respectively) versus the IFCR-F group (8 +/- 3%; 7 +/- 4%, respectively). LDL peak particle size increased (P < 0.01) in the IFCR-L group only. The proportion of small LDL particles decreased (P < 0.01) in both groups. Adipokines, such as leptin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and insulin-like growth factor-1 (IGF-1) decreased (P < 0.05), in the IFCR-L group only. CONCLUSION: These findings suggest that IFCR with a liquid diet favorably modulates visceral fat and adipokines in a way that may confer protection against CHD.

Concepts: Cholesterol, Nutrition, Atherosclerosis, Obesity, Mass, Adipose tissue, Insulin-like growth factor 1, LDL


It is well established that glycogen depletion affects endurance exercise performance negatively. Moreover, numerous studies have demonstrated that post-exercise carbohydrate ingestion improves exercise recovery by increasing glycogen resynthesis. However, recent research into the effects of glycogen availability sheds new light on the role of the widely accepted energy source for adenosine triphosphate (ATP) resynthesis during endurance exercise. Indeed, several studies showed that endurance training with low glycogen availability leads to similar and sometimes even better adaptations and performance compared to performing endurance training sessions with replenished glycogen stores. In the case of resistance exercise, a few studies have been performed on the role of glycogen availability on the early post-exercise anabolic response. However, the effects of low glycogen availability on phenotypic adaptations and performance following prolonged resistance exercise remains unclear to date. This review summarizes the current knowledge about the effects of glycogen availability on skeletal muscle adaptations for both endurance and resistance exercise. Furthermore, it describes the role of glycogen availability when both exercise modes are performed concurrently.

Concepts: Metabolism, Adenosine triphosphate, Glucose, Exercise, Glycogen, Performance, Exercise physiology, Endurance


Dietary fibre-induced satiety offers a physiological approach to body weight regulation, yet there is lack of scientific evidence. This experiment quantified food intake, body weight and body composition responses to three different soluble fermentable dietary fibres in an animal model and explored underlying mechanisms of satiety signalling and hindgut fermentation.

Concepts: Human, Nutrition, Biology, Physiology, Fiber, Dietary fiber, Fermentation, Omnivore