SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Nature reviews. Immunology

6

The mucosal surfaces of mammals are densely colonized with microorganisms that are commonly referred to as the commensal microbiota. It is believed that the fetus in utero is sterile and that colonization with microorganisms starts only after birth. Nevertheless, the unborn fetus is exposed to a multitude of metabolites that originate from the commensal microbiota of the mother that reach systemic sites of the maternal body. The intestinal microbiota is strongly personalized and influenced by environmental factors, including nutrition. Members of the maternal microbiota can metabolize dietary components, pharmaceuticals and toxins, which can subsequently be passed to the developing fetus or the breast-feeding neonate. In this Review, we discuss the complex interplay between nutrition, the maternal microbiota and ingested chemicals, and summarize their effects on immunity in the offspring.

Concepts: Immune system, Infant, Bacteria, Gut flora, Metabolism, Nutrition, Fetus, Innate immune system

5

Tumour growth is accompanied by tumour evasion of the immune system, a process that is facilitated by immune checkpoint molecules such as programmed cell death protein 1 (PD1). However, the role of tumour glycosylation in immune evasion has mostly been overlooked, despite the fact that aberrant tumour glycosylation alters how the immune system perceives the tumour and can also induce immunosuppressive signalling through glycan-binding receptors. As such, specific glycan signatures found on tumour cells can be considered as a novel type of immune checkpoint. In parallel, glycosylation of tumour proteins generates neo-antigens that can serve as targets for tumour-specific T cells. In this Opinion article, we highlight how the tumour ‘glyco-code’ modifies immunity and suggest that targeting glycans could offer new therapeutic opportunities.

Concepts: Immune system, Antibody, Protein, Apoptosis, Immunology, Humoral immunity, Immunity, Adaptive immune system

5

Cancer vaccines, which are designed to amplify tumour-specific T cell responses through active immunization, have long been envisioned as a key tool of effective cancer immunotherapy. Despite a clear rationale for such vaccines, extensive past efforts were unsuccessful in mediating clinically relevant antitumour activity in humans. Recently, however, next-generation sequencing and novel bioinformatics tools have enabled the systematic discovery of tumour neoantigens, which are highly desirable immunogens because they arise from somatic mutations of the tumour and are therefore tumour specific. As a result of the diversity of tumour neoepitopes between individuals, the development of personalized cancer vaccines is warranted. Here, we review the emerging field of personalized cancer vaccination and discuss recent developments and future directions for this promising treatment strategy.

Concepts: Immune system, Cancer, Mutation, Oncology, Vaccine, Vaccination, Immunology, Immunization

4

Cancer immunotherapy aims to promote the activity of cytotoxic T lymphocytes (CTLs) within a tumour, assist the priming of tumour-specific CTLs in lymphoid organs and establish efficient and durable antitumour immunity. During priming, help signals are relayed from CD4+ T cells to CD8+ T cells by specific dendritic cells to optimize the magnitude and quality of the CTL response. In this Review, we highlight the cellular dynamics and membrane receptors that mediate CD4+ T cell help and the molecular mechanisms of the enhanced antitumour activity of CTLs. We outline how deficient CD4+ T cell help reduces the response of CTLs and how maximizing CD4+ T cell help can improve outcomes in cancer immunotherapy strategies.

4

IFNγ is a cytokine with important roles in tissue homeostasis, immune and inflammatory responses and tumour immunosurveillance. Signalling by the IFNγ receptor activates the Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) pathway to induce the expression of classical interferon-stimulated genes that have key immune effector functions. This Review focuses on recent advances in our understanding of the transcriptional, chromatin-based and metabolic mechanisms that underlie IFNγ-mediated polarization of macrophages to an ‘M1-like’ state, which is characterized by increased pro-inflammatory activity and macrophage resistance to tolerogenic and anti-inflammatory factors. In addition, I describe the newly discovered effects of IFNγ on other leukocytes, vascular cells, adipose tissue cells, neurons and tumour cells that have important implications for autoimmunity, metabolic diseases, atherosclerosis, neurological diseases and immune checkpoint blockade cancer therapy.

4

Here, we discuss the link between nutrition, non-communicable chronic diseases and socio-economic standing, with a special focus on the microbiota. We provide a theoretical framework and several lines of evidence from both animal and human studies that support the idea that income inequality is an underlying factor for the maladaptive changes seen in the microbiota in certain populations. We propose that this contributes to the health disparities that are seen between lower-income and higher-income populations in high-income countries.

Concepts: Medicine, Disease, Medical terms, Poverty, Chronic

4

The comparison of the immunological state of pregnancy to an immunosuppressed host-graft model continues to lead research and clinical practice to ill-defined approaches. This Review discusses recent evidence that supports the idea that immunological responses at the receptive maternal-fetal interface are not simply suppressed but are instead highly dynamic. We discuss the crucial role of trophoblast cells in shaping not only the way in which immune cells respond to the invading blastocyst but also how they collectively react to external stimuli. We also discuss the role of the microbiota in promoting a tolerogenic maternal immune system and highlight how subclinical viral infections can disrupt this status quo, leading to pregnancy complications.

Concepts: Immune system, Antibody, Bacteria, Immunology

4

The incidence of allergic disease continues to rise in industrialized countries. The rapid increase in the incidence of allergic disease throughout the past half century suggests that recently altered environmental factors are driving allergy development. Accumulating evidence suggests that environmental experiences that occur during the first months of life can influence the risk of allergic sensitization. In this Review, we present the evidence relating to specific early life exposures that affect future allergy development, and discuss how these exposures may promote either tolerance or allergic sensitization.

Concepts: Present, Time, Life, Immunology, Future, Allergy, Past, Allergic inflammation

4

Immunological identity is traditionally defined by genetically encoded antigens, with equal maternal and paternal contributions as a result of Mendelian inheritance. However, vertically transferred maternal cells also persist in individuals at very low levels throughout postnatal development. Reciprocally, mothers are seeded during pregnancy with genetically foreign fetal cells that persist long after parturition. Recent findings suggest that these microchimeric cells expressing non-inherited, familially relevant antigenic traits are not accidental ‘souvenirs’ of pregnancy, but are purposefully retained within mothers and their offspring to promote genetic fitness by improving the outcome of future pregnancies. In this Review, we discuss the immunological implications, benefits and potential consequences of individuals being constitutively chimeric with a biologically active ‘microchiome’ of genetically foreign cells.

Concepts: Gene, Pregnancy, Childbirth, Genetics, Evolution, Embryo, Gregor Mendel, Mother

4

In recent years a substantial number of findings have been made in the area of immunometabolism, by which we mean the changes in intracellular metabolic pathways in immune cells that alter their function. Here, we provide a brief refresher course on six of the major metabolic pathways involved (specifically, glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid metabolism), giving specific examples of how precise changes in the metabolites of these pathways shape the immune cell response. What is emerging is a complex interplay between metabolic reprogramming and immunity, which is providing an extra dimension to our understanding of the immune system in health and disease.

Concepts: Immune system, Antibody, Metabolism, Adenosine triphosphate, Immunology, Humoral immunity, Fatty acid metabolism, Biochemistry