SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Nature reviews. Immunology

764

Immunization is a cornerstone of public health policy and is demonstrably highly cost-effective when used to protect child health. Although it could be argued that immunology has not thus far contributed much to vaccine development, in that most of the vaccines we use today were developed and tested empirically, it is clear that there are major challenges ahead to develop new vaccines for difficult-to-target pathogens, for which we urgently need a better understanding of protective immunity. Moreover, recognition of the huge potential and challenges for vaccines to control disease outbreaks and protect the older population, together with the availability of an array of new technologies, make it the perfect time for immunologists to be involved in designing the next generation of powerful immunogens. This Review provides an introductory overview of vaccines, immunization and related issues and thereby aims to inform a broad scientific audience about the underlying immunological concepts.

392

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Alongside investigations into the virology of SARS-CoV-2, understanding the fundamental physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies. Here, we provide an overview of the pathophysiology of SARS-CoV-2 infection. We describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of dysfunctional immune responses to disease progression. From nascent reports describing SARS-CoV-2, we make inferences on the basis of the parallel pathophysiological and immunological features of the other human coronaviruses targeting the lower respiratory tract - severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Finally, we highlight the implications of these approaches for potential therapeutic interventions that target viral infection and/or immunoregulation.

235

Immunity is a multifaceted phenomenon. For T cell-mediated memory responses to SARS-CoV-2, it is relevant to consider their impact both on COVID-19 disease severity and on viral spread in a population. Here, we reflect on the immunological and epidemiological aspects and implications of pre-existing cross-reactive immune memory to SARS-CoV-2, which largely originates from previous exposure to circulating common cold coronaviruses. We propose four immunological scenarios for the impact of cross-reactive CD4+ memory T cells on COVID-19 severity and viral transmission. For each scenario, we discuss its implications for the dynamics of herd immunity and on projections of the global impact of SARS-CoV-2 on the human population, and assess its plausibility. In sum, we argue that key potential impacts of cross-reactive T cell memory are already incorporated into epidemiological models based on data of transmission dynamics, particularly with regard to their implications for herd immunity. The implications of immunological processes on other aspects of SARS-CoV-2 epidemiology are worthy of future study.

163

The COVID-19 pandemic caused by infection with SARS-CoV-2 has led to more than 200,000 deaths worldwide. Several studies have now established that the hyperinflammatory response induced by SARS-CoV-2 is a major cause of disease severity and death in infected patients. Macrophages are a population of innate immune cells that sense and respond to microbial threats by producing inflammatory molecules that eliminate pathogens and promote tissue repair. However, a dysregulated macrophage response can be damaging to the host, as is seen in the macrophage activation syndrome induced by severe infections, including in infections with the related virus SARS-CoV. Here we describe the potentially pathological roles of macrophages during SARS-CoV-2 infection and discuss ongoing and prospective therapeutic strategies to modulate macrophage activation in patients with COVID-19.

129

Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed ‘trained immunity’, a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define ‘trained immunity’ as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity.

116

A male bias in mortality has emerged in the COVID-19 pandemic, which is consistent with the pathogenesis of other viral infections. Biological sex differences may manifest themselves in susceptibility to infection, early pathogenesis, innate viral control, adaptive immune responses or the balance of inflammation and tissue repair in the resolution of infection. We discuss available sex-disaggregated epidemiological data from the COVID-19 pandemic, introduce sex-differential features of immunity and highlight potential sex differences underlying COVID-19 severity. We propose that sex differences in immunopathogenesis will inform mechanisms of COVID-19, identify points for therapeutic intervention and improve vaccine design and increase vaccine efficacy.

99

Males and females differ in their immunological responses to foreign and self-antigens and show distinctions in innate and adaptive immune responses. Certain immunological sex differences are present throughout life, whereas others are only apparent after puberty and before reproductive senescence, suggesting that both genes and hormones are involved. Furthermore, early environmental exposures influence the microbiome and have sex-dependent effects on immune function. Importantly, these sex-based immunological differences contribute to variations in the incidence of autoimmune diseases and malignancies, susceptibility to infectious diseases and responses to vaccines in males and females. Here, we discuss these differences and emphasize that sex is a biological variable that should be considered in immunological studies.

Concepts: Immune system, Medicine, Cancer, Infectious disease, Male, Organism, Infection, Immunology

95

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the most formidable challenge to humanity in a century. It is widely believed that prepandemic normalcy will never return until a safe and effective vaccine strategy becomes available and a global vaccination programme is implemented successfully. Here, we discuss the immunological principles that need to be taken into consideration in the development of COVID-19 vaccine strategies. On the basis of these principles, we examine the current COVID-19 vaccine candidates, their strengths and potential shortfalls, and make inferences about their chances of success. Finally, we discuss the scientific and practical challenges that will be faced in the process of developing a successful vaccine and the ways in which COVID-19 vaccine strategies may evolve over the next few years.

63

The role of T cells in the resolution or exacerbation of COVID-19, as well as their potential to provide long-term protection from reinfection with SARS-CoV-2, remains debated. Nevertheless, recent studies have highlighted various aspects of T cell responses to SARS-CoV-2 infection that are starting to enable some general concepts to emerge.

47

Vaccines are urgently needed to control the coronavirus disease 2019 (COVID-19) pandemic and to help the return to pre-pandemic normalcy. A great many vaccine candidates are being developed, several of which have completed late-stage clinical trials and are reporting positive results. In this Progress article, we discuss which viral elements are used in COVID-19 vaccine candidates, why they might act as good targets for the immune system and the implications for protective immunity.