SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Nature reviews. Drug discovery

28

The time has come to move beyond product-focused ‘magic bullet’ therapeutic development strategies towards models that can also incorporate devices, tools and services to provide integrated health-care solutions.

Concepts: Health care, Medicine, Public health, Health insurance, Health, Barack Obama, Silver bullet

28

In recent years, prominent roles for microRNAs (miRNAs) have been uncovered in several cardiovascular disorders. The ability to therapeutically manipulate miRNA expression and function through systemic or local delivery of miRNA inhibitors, referred to as antimiRs, has triggered enthusiasm for miRNAs as novel therapeutic targets. Here, we focus on the pharmacokinetic and pharmacodynamic properties of current antimiR designs and their relevance to cardiovascular indications, and evaluate the opportunities and obstacles associated with this new therapeutic modality.

Concepts: Medicine, Gene, Disease, RNA, Cardiovascular disease, MicroRNA, Messenger RNA, Non-infectious disease

28

The identification of driver oncogenes has provided important targets for drugs that can change the landscape of cancer therapies. One such example is the BRAF oncogene, which is found in about half of all melanomas as well as several other cancers. As a druggable kinase, oncogenic BRAF has become a crucial target of small-molecule drug discovery efforts. Following a rapid clinical development path, vemurafenib (Zelboraf; Plexxikon/Roche) was approved for the treatment of BRAF-mutated metastatic melanoma in the United States in August 2011 and the European Union in February 2012. This Review describes the underlying biology of BRAF, the technology used to identify vemurafenib and its clinical development milestones, along with future prospects based on lessons learned during its development.

Concepts: Cancer, Metastasis, Oncology, European Union, United States, Chemotherapy, Melanoma, Oncogene

27

Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions - including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity - pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics.

Concepts: Immune system, Antibody, Cancer, Infectious disease, Apoptosis, Immunology, Immune system disorders, TGN1412

23

Major depressive disorder (MDD) is severely disabling, and current treatments have limited efficacy. The glutamate N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine was recently repurposed as a rapidly acting antidepressant, catalysing the vigorous investigation of glutamate-signalling modulators as novel therapeutic agents for depressive disorders. In this Review, we discuss the progress made in the development of such modulators for the treatment of depression, and examine recent preclinical and translational studies that have investigated the mechanisms of action of glutamate-targeting antidepressants. Fundamental questions remain regarding the future prospects of this line of drug development, including questions concerning safety and tolerability, efficacy, dose-response relationships and therapeutic mechanisms.

Concepts: Serotonin, Selective serotonin reuptake inhibitor, Bipolar disorder, Major depressive disorder, Sertraline

20

The success of mechanism-based drug discovery depends on the definition of the drug target. This definition becomes even more important as we try to link drug response to genetic variation, understand stratified clinical efficacy and safety, rationalize the differences between drugs in the same therapeutic class and predict drug utility in patient subgroups. However, drug targets are often poorly defined in the literature, both for launched drugs and for potential therapeutic agents in discovery and development. Here, we present an updated comprehensive map of molecular targets of approved drugs. We curate a total of 893 human and pathogen-derived biomolecules through which 1,578 US FDA-approved drugs act. These biomolecules include 667 human-genome-derived proteins targeted by drugs for human disease. Analysis of these drug targets indicates the continued dominance of privileged target families across disease areas, but also the growth of novel first-in-class mechanisms, particularly in oncology. We explore the relationships between bioactivity class and clinical success, as well as the presence of orthologues between human and animal models and between pathogen and human genomes. Through the collaboration of three independent teams, we highlight some of the ongoing challenges in accurately defining the targets of molecular therapeutics and present conventions for deconvoluting the complexities of molecular pharmacology and drug efficacy.

Concepts: Pharmacology, Medicine, Clinical trial, Cancer, Disease, Human genome, Cure, Definition

9

Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.

Concepts: Pharmacology, Medicine, Physiology, The Canon of Medicine, Hematology, Biochemistry, Homeostasis, Comparative physiology

7

Maintaining research and development (R&D) productivity at a sustainable level is one of the main challenges currently facing the pharmaceutical industry. In this article, we discuss the results of a comprehensive longitudinal review of AstraZeneca’s small-molecule drug projects from 2005 to 2010. The analysis allowed us to establish a framework based on the five most important technical determinants of project success and pipeline quality, which we describe as the five ‘R’s: the right target, the right patient, the right tissue, the right safety and the right commercial potential. A sixth factor - the right culture - is also crucial in encouraging effective decision-making based on these technical determinants. AstraZeneca is currently applying this framework to guide its R&D teams, and although it is too early to demonstrate whether this has improved the company’s R&D productivity, we present our data and analysis here in the hope that it may assist the industry overall in addressing this key challenge.

Concepts: Pharmacology, Left-wing politics, Pharmaceutical industry, Pharmaceutical drug, Challenge, Research and development, Industry, AstraZeneca

7

The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.

Concepts: Medicine, Bacteria, Virus, Antibiotic resistance, Antibiotic, Microorganism, Penicillin, Antibiotics

5

G protein-coupled receptors (GPCRs) are the most intensively studied drug targets, mostly due to their substantial involvement in human pathophysiology and their pharmacological tractability. Here, we report an up-to-date analysis of all GPCR drugs and agents in clinical trials, which reveals current trends across molecule types, drug targets and therapeutic indications, including showing that 475 drugs (~34% of all drugs approved by the US Food and Drug Administration (FDA)) act at 108 unique GPCRs. Approximately 321 agents are currently in clinical trials, of which ~20% target 66 potentially novel GPCR targets without an approved drug, and the number of biological drugs, allosteric modulators and biased agonists has increased. The major disease indications for GPCR modulators show a shift towards diabetes, obesity and Alzheimer disease, although several central nervous system disorders are also highly represented. The 224 (56%) non-olfactory GPCRs that have not yet been explored in clinical trials have broad untapped therapeutic potential, particularly in genetic and immune system disorders. Finally, we provide an interactive online resource to analyse and infer trends in GPCR drug discovery.

Concepts: Alzheimer's disease, Central nervous system, Nervous system, Pharmacology, Clinical trial, Signal transduction, Pharmaceutical industry, G protein-coupled receptor