SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Nature reviews. Cardiology

170

Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria.

Concepts: Photosynthesis, Metabolism, Adenosine triphosphate, Mitochondrion, Oxidative phosphorylation, Cellular respiration, Reactive oxygen species, Electron transport chain

79

Coronavirus disease 2019 (COVID-19), caused by a strain of coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic that has affected the lives of billions of individuals. Extensive studies have revealed that SARS-CoV-2 shares many biological features with SARS-CoV, the zoonotic virus that caused the 2002 outbreak of severe acute respiratory syndrome, including the system of cell entry, which is triggered by binding of the viral spike protein to angiotensin-converting enzyme 2. Clinical studies have also reported an association between COVID-19 and cardiovascular disease. Pre-existing cardiovascular disease seems to be linked with worse outcomes and increased risk of death in patients with COVID-19, whereas COVID-19 itself can also induce myocardial injury, arrhythmia, acute coronary syndrome and venous thromboembolism. Potential drug-disease interactions affecting patients with COVID-19 and comorbid cardiovascular diseases are also becoming a serious concern. In this Review, we summarize the current understanding of COVID-19 from basic mechanisms to clinical perspectives, focusing on the interaction between COVID-19 and the cardiovascular system. By combining our knowledge of the biological features of the virus with clinical findings, we can improve our understanding of the potential mechanisms underlying COVID-19, paving the way towards the development of preventative and therapeutic solutions.

32

Despite strong scientific evidence supporting the benefits of regular exercise for the prevention and management of cardiovascular disease (CVD), physical inactivity is highly prevalent worldwide. In addition to merely changing well-known risk factors for systemic CVD, regular exercise can also improve cardiovascular health through non-traditional mechanisms. Understanding the pathways through which exercise influences different physiological systems is important and might yield new therapeutic strategies to target pathophysiological mechanisms in CVD. This Review includes a critical discussion of how regular exercise can have antiatherogenic effects in the vasculature, improve autonomic balance (thereby reducing the risk of malignant arrhythmias), and induce cardioprotection against ischaemia-reperfusion injury, independent of effects on traditional CVD risk factors. This Review also describes how exercise promotes a healthy anti-inflammatory milieu (largely through the release of muscle-derived myokines), stimulates myocardial regeneration, and ameliorates age-related loss of muscle mass and strength, a frequently overlooked non-traditional CVD risk factor. Finally, we discuss how the benefits of exercise might also occur via promotion of a healthy gut microbiota. We argue, therefore, that a holistic view of all body systems is necessary and useful when analysing the role of exercise in cardiovascular health.

27

Hypertriglyceridaemia (typical triglyceride level 1.7-5.0 mmol/l) is caused by interactions between many genetic and nongenetic factors, and is a common risk factor for atherosclerotic cardiovascular disease (CVD). Patients with hypertriglyceridaemia usually present with obesity, insulin resistance, hepatic steatosis, ectopic fat deposition, and diabetes mellitus. Hypertriglyceridaemia reflects the accumulation in plasma of proatherogenic lipoproteins, triglyceride-rich lipoprotein (TRL) remnants, and small, dense LDL particles. Mendelian randomization studies and research on inherited dyslipidaemias, such as type III dysbetalipoproteinaemia, testify that TRLs are causally related to atherosclerotic CVD. Extreme hypertriglyceridaemia (a triglyceride level >20 mmol/l) is rare, often monogenic in aetiology, and frequently causes pancreatitis. Treatment of hypertriglyceridaemia relies on correcting secondary factors and unhealthy lifestyle habits, particularly poor diet and lack of exercise. Pharmacotherapy is indicated for patients with established CVD or individuals at moderate-to-high risk of CVD, primarily those with metabolic syndrome or diabetes. Statins are the cornerstone of treatment, followed by fibrates and n-3 fatty acids, to achieve recommended therapeutic levels of plasma LDL cholesterol, non-HDL cholesterol, and apolipoprotein (apo) B-100. The case for using niacin has been weakened by the results of clinical trials, but needs further investigation. Extreme hypertriglyceridaemia requires strict dietary measures, and patients with a diagnosis of genetic lipoprotein lipase deficiency might benefit from LPL gene replacement therapy. Several therapies for regulating TRL metabolism, including inhibitors of diacylglycerol O-acyltransferase and microsomal triglyceride transfer protein, and apoC-III antisense oligonucleotides, merit further investigation in patients with hypertriglyceridaemia.

Concepts: Cholesterol, Nutrition, Myocardial infarction, Atherosclerosis, Obesity, Cardiovascular disease, Triglyceride, Metabolic syndrome

26

Atherosclerosis is a chronic, multifactorial disease that starts in youth, manifests clinically later in life, and can lead to myocardial infarction, stroke, claudication, and death. Although inflammatory processes have long been known to be involved in atherogenesis, interest in this subject has grown in the past 30-40 years. Animal experiments and human analyses of early atherosclerotic lesions have shown that the first pathogenic event in atherogenesis is the intimal infiltration of T cells at arterial branching points. These T cells recognize heat shock protein (HSP)60, which is expressed together with adhesion molecules by endothelial cells in response to classic risk factors for atherosclerosis. Although these HSP60-reactive T cells initiate atherosclerosis, antibodies to HSP60 accelerate and perpetuate the disease. All healthy humans develop cellular and humoral immunity against microbial HSP60 by infection or vaccination. Given that prokaryotic (bacterial) and eukaryotic (for instance, human) HSP60 display substantial sequence homology, atherosclerosis might be the price we pay for this protective immunity, if risk factors stress the vascular endothelial cells beyond physiological conditions.

Concepts: Immune system, Inflammation, DNA, Bacteria, Myocardial infarction, Atherosclerosis, Artery, Endothelium

24

Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β2-adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

Concepts: Protein, Amino acid, Nutrition, Obesity, Muscle, Essential fatty acid, Growth hormone, Muscle atrophy

20

Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.

14

The effect of dietary fats on cardiometabolic diseases, including cardiovascular diseases and type 2 diabetes mellitus, has generated tremendous interest. Many earlier investigations focused on total fat and conventional fat classes (such as saturated and unsaturated fats) and their influence on a limited number of risk factors. However, dietary fats comprise heterogeneous molecules with diverse structures, and growing research in the past two decades supports correspondingly complex health effects of individual dietary fats. Moreover, health effects of dietary fats might be modified by additional factors, such as accompanying nutrients and food-processing methods, emphasizing the importance of the food sources. Accordingly, the rapidly increasing scientific findings on dietary fats and cardiometabolic diseases have generated debate among scientists, caused confusion for the general public and present challenges for translation into dietary advice and policies. This Review summarizes the evidence on the effects of different dietary fats and their food sources on cell function and on risk factors and clinical events of cardiometabolic diseases. The aim is not to provide an exhaustive review but rather to focus on the most important evidence from randomized controlled trials and prospective cohort studies and to highlight current areas of controversy and the most relevant future research directions for understanding how to improve the prevention and management of cardiometabolic diseases through optimization of dietary fat intake.

14

Most older individuals develop inflammageing, a condition characterized by elevated levels of blood inflammatory markers that carries high susceptibility to chronic morbidity, disability, frailty, and premature death. Potential mechanisms of inflammageing include genetic susceptibility, central obesity, increased gut permeability, changes to microbiota composition, cellular senescence, NLRP3 inflammasome activation, oxidative stress caused by dysfunctional mitochondria, immune cell dysregulation, and chronic infections. Inflammageing is a risk factor for cardiovascular diseases (CVDs), and clinical trials suggest that this association is causal. Inflammageing is also a risk factor for chronic kidney disease, diabetes mellitus, cancer, depression, dementia, and sarcopenia, but whether modulating inflammation beneficially affects the clinical course of non-CVD health problems is controversial. This uncertainty is an important issue to address because older patients with CVD are often affected by multimorbidity and frailty - which affect clinical manifestations, prognosis, and response to treatment - and are associated with inflammation by mechanisms similar to those in CVD. The hypothesis that inflammation affects CVD, multimorbidity, and frailty by inhibiting growth factors, increasing catabolism, and interfering with homeostatic signalling is supported by mechanistic studies but requires confirmation in humans. Whether early modulation of inflammageing prevents or delays the onset of cardiovascular frailty should be tested in clinical trials.

13

Cardiovascular safety is an important consideration in the debate on the benefits versus the risks of electronic cigarette (EC) use. EC emissions that might have adverse effects on cardiovascular health include nicotine, oxidants, aldehydes, particulates, and flavourants. To date, most of the cardiovascular effects of ECs demonstrated in humans are consistent with the known effects of nicotine. Pharmacological and toxicological studies support the biological plausibility that nicotine contributes to acute cardiovascular events and accelerated atherogenesis. However, epidemiological studies assessing Swedish smokeless tobacco, which exposes users to nicotine without combustion products, generally have not found an increased risk of myocardial infarction or stroke among users, but suggest that nicotine might contribute to acute cardiovascular events, especially in those with underlying coronary heart disease. The effects of aldehydes, particulates, and flavourants derived from ECs on cardiovascular health have not been determined. Although ECs might pose some cardiovascular risk to users, particularly those with existing cardiovascular disease, the risk is thought to be less than that of cigarette smoking based on qualitative and quantitative comparisons of EC aerosol versus cigarette smoke constituents. The adoption of ECs rather than cigarette smoking might, therefore, result in an overall benefit for public health.

Concepts: Myocardial infarction, Atherosclerosis, Cardiovascular disease, Smoking, Tobacco, Tobacco smoking, Cigarette, Nicotine