SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Nature protocols

28

Primary human fallopian tube secretory epithelial cell (FTSEC) cultures are useful for studying normal fallopian tube epithelial biology, as well as for developing models of fallopian tube disease, such as cancer. Because of the limited ability of primary human FTSECs to proliferate in vitro, it is necessary to immortalize them in order to establish a cell line that is suitable for long-term culture and large-scale in vitro experimentation. This protocol describes the isolation of FTSECs from human fallopian tube tissue, conditions for primary FTSEC culture and techniques for establishing immortal FTSEC lines. The entire process, from primary cell isolation to establishment of an immortal cell line, may take up to 2 months. Once established, immortal FTSECs can typically be maintained for at least 30 passages.

Concepts: Cell, Cell biology, Epithelium, Cell culture, Skin, HeLa, Fallopian tube

27

Introducing human genes into mice offers the opportunity to analyze their in vivo function or to obtain therapeutic molecules. For proper gene regulation, or in case of multigene families, megabase (Mb)-sized DNA fragments often have to be used. Yeast artificial chromosome (YAC)-mediated transgenesis is irreplaceable for this purpose, because alternative methods such as the use of bacterial artificial chromosomes (BACs) cannot introduce DNA fragments larger than 500 kb into the mouse germ line. However, YAC libraries often contain only partial gene loci. Time-consuming reconstruction of YACs, genetic instability and the difficulty in obtaining intact YAC DNA above a certain size impede the generation of humanized mice. Here we describe how to reconstruct YACs containing Mb-sized human DNA, such as the T cell receptor-α (TRA) gene locus, thus facilitating the introduction of large DNA fragments into the mouse germ line. Fusion of YAC-containing yeast and embryonic stem (ES) cells avoids the need for YAC DNA purification. These ES cells are then used to stably introduce the functional TRA gene locus into the mouse germ line. The protocol takes ∼1 year to complete, from reconstruction of the entire TRA gene locus from YACs containing partial but overlapping TRA regions to germline transmission of the YAC.

Concepts: DNA, Gene, Genetics, Gene expression, Cell, Bacteria, Molecular biology, Chromosome

26

Artificial miRNA (amiRNA) technology offers highly specific gene silencing in diverse plant species. The principal challenge in amiRNA application is to select potent amiRNAs from hundreds of bioinformatically designed candidates to enable maximal target gene silencing at the protein level. To address this issue, we developed the epitope-tagged protein-based amiRNA (ETPamir) screens, in which single or multiple potential target genes encoding epitope-tagged proteins are constitutively or inducibly coexpressed with individual amiRNA candidates in plant protoplasts. Accumulation of tagged proteins, detected by immunoblotting with commercial tag antibodies, inversely and quantitatively reflects amiRNA efficacy in vivo. The core procedure, from protoplast isolation to identification of optimal amiRNA, can be completed in 2-3 d. The ETPamir screens circumvent the limited availability of plant antibodies and the complexity of plant amiRNA silencing at target mRNA and/or protein levels. The method can be extended to verify predicted target genes for endogenous plant miRNAs.

Concepts: DNA, Protein, Gene, Transcription, Molecular biology, RNA, Ribosome, C-reactive protein

25

High-throughput single-cell technologies provide an unprecedented view into cellular heterogeneity, yet they pose new challenges in data analysis and interpretation. In this protocol, we describe the use of Spanning-tree Progression Analysis of Density-normalized Events (SPADE), a density-based algorithm for visualizing single-cell data and enabling cellular hierarchy inference among subpopulations of similar cells. It was initially developed for flow and mass cytometry single-cell data. We describe SPADE’s implementation and application using an open-source R package that runs on Mac OS X, Linux and Windows systems. A typical SPADE analysis on a 2.27-GHz processor laptop takes ∼5 min. We demonstrate the applicability of SPADE to single-cell RNA-seq data. We compare SPADE with recently developed single-cell visualization approaches based on the t-distribution stochastic neighborhood embedding (t-SNE) algorithm. We contrast the implementation and outputs of these methods for normal and malignant hematopoietic cells analyzed by mass cytometry and provide recommendations for appropriate use. Finally, we provide an integrative strategy that combines the strengths of t-SNE and SPADE to infer cellular hierarchy from high-dimensional single-cell data.

Concepts: Mac OS X, Apple Inc., Operating system, Mac OS, Microsoft Windows, Macintosh, Mac OS 9, SheepShaver

24

In vitro 3D organoid systems have revolutionized the modeling of organ development and diseases in a dish. Fluorescence microscopy has contributed to the characterization of the cellular composition of organoids and demonstrated organoids' phenotypic resemblance to their original tissues. Here, we provide a detailed protocol for performing high-resolution 3D imaging of entire organoids harboring fluorescence reporters and upon immunolabeling. This method is applicable to a wide range of organoids of differing origins and of various sizes and shapes. We have successfully used it on human airway, colon, kidney, liver and breast tumor organoids, as well as on mouse mammary gland organoids. It includes a simple clearing method utilizing a homemade fructose-glycerol clearing agent that captures 3D organoids in full and enables marker quantification on a cell-by-cell basis. Sample preparation has been optimized for 3D imaging by confocal, super-resolution confocal, multiphoton and light-sheet microscopy. From organoid harvest to image analysis, the protocol takes 3 d.

24

Molecularly imprinted polymers (MIPs) are materials that are designed to be receptors for a template molecule (e.g., a protein). They are made by polymerizing the polymerizable reagents in the presence of the template; when the template is removed, the material can be used for many applications that would traditionally use antibodies. Thus, MIPs are biomimetic of antibodies and in this capacity have found wide applications, such as sensing, separation and diagnosis. However, many imprinting approaches are uncontrollable, and facile imprinting approaches widely applicable to a large variety of templates remain limited. We developed an approach called boronate affinity controllable-oriented surface imprinting, which allows for easy and efficient preparation of MIPs specific to glycoproteins, glycans and monosaccharides. This approach relies on immobilization of a template (glycoprotein, glycan or monosaccharide) on a boronic-acid-functionalized substrate through boronate affinity interaction, followed by self-polymerization of biocompatible monomer(s) to form an imprinting layer on the substrate with appropriate thickness. Imprinting in this approach is performed in a controllable manner, permitting the thickness of the imprinting layer to be fine-tuned according to the molecular size of the template by adjusting the imprinting time. This not only simplifies the imprinting procedure but also makes the approach widely applicable to a large range of sugar-containing biomolecules. MIPs prepared by this approach exhibit excellent binding properties and can be applied to complex real samples. The MIPs prepared by this protocol have been used in affinity separation, disease diagnosis and bioimaging. The entire protocol, including preparation, property characterization and performance evaluation, takes ∼3-8 d, depending on the type of substrate and template used.

Concepts: Antibody, Protein, Glycoproteins, Molecule, Carbohydrate chemistry, Carbohydrates, Glycoprotein, Lectin

24

Testing of therapies for disease or injury often involves the analysis of longitudinal data from animals. Modern analytical methods have advantages over conventional methods (particularly when some data are missing), yet they are not used widely by preclinical researchers. Here we provide an easy-to-use protocol for the analysis of longitudinal data from animals, and we present a click-by-click guide for performing suitable analyses using the statistical package IBM SPSS Statistics software (SPSS). We guide readers through the analysis of a real-life data set obtained when testing a therapy for brain injury (stroke) in elderly rats. If a few data points are missing, as in this example data set (for example, because of animal dropout), repeated-measures analysis of covariance may fail to detect a treatment effect. An alternative analysis method, such as the use of linear models (with various covariance structures), and analysis using restricted maximum likelihood estimation (to include all available data) can be used to better detect treatment effects. This protocol takes 2 h to carry out.

Concepts: Statistics, Estimation theory, Sociology, Maximum likelihood, Generalized linear model, SPSS, Covariance matrix, Likelihood function

20

‘Speed breeding’ (SB) shortens the breeding cycle and accelerates crop research through rapid generation advancement. SB can be carried out in numerous ways, one of which involves extending the duration of plants' daily exposure to light, combined with early seed harvest, to cycle quickly from seed to seed, thereby reducing the generation times for some long-day (LD) or day-neutral crops. In this protocol, we present glasshouse and growth chamber-based SB approaches with supporting data from experimentation with several crops. We describe the conditions that promote the rapid growth of bread wheat, durum wheat, barley, oat, various Brassica species, chickpea, pea, grass pea, quinoa and Brachypodium distachyon. Points of flexibility within the protocols are highlighted, including how plant density can be increased to efficiently scale up plant numbers for single-seed descent (SSD). In addition, instructions are provided on how to perform SB on a small scale in a benchtop growth cabinet, enabling optimization of parameters at a low cost.

19

Long-term fluorescence live-cell imaging experiments have long been limited by the effects of excitation-induced phototoxicity. The advent of light-sheet microscopy now allows users to overcome this limitation by restricting excitation to a narrow illumination plane. In addition, light-sheet imaging allows for high-speed image acquisition with uniform illumination of samples composed of multiple cell layers. The majority of studies conducted thus far have used custom-built platforms with specialized hardware and software, along with specific sample handling approaches. The first versatile commercially available light-sheet microscope, Lightsheet Z.1, offers a number of innovative solutions, but it requires specific strategies for sample handling during long-term imaging experiments. There are currently no standard procedures describing the preparation of plant specimens for imaging with the Lightsheet Z.1. Here we describe a detailed protocol to prepare plant specimens for light-sheet microscopy, in which Arabidopsis seeds or seedlings are placed in solid medium within glass capillaries or fluorinated ethylene propylene tubes. Preparation of plant material for imaging may be completed within one working day.

Concepts: Sample, Biology, Plant, Microscope, Alkene, Seed, Plant morphology, Fluorinated ethylene propylene

18

Human induced pluripotent stem cells (iPSCs) have been generated with varied efficiencies from multiple tissues. Yet, acquiring donor cells is, in most instances, an invasive procedure that requires laborious isolation. Here we present a detailed protocol for generating human iPSCs from exfoliated renal epithelial cells present in urine. This method is advantageous in many circumstances, as the isolation of urinary cells is simple (30 ml of urine are sufficient), cost-effective and universal (can be applied to any age, gender and race). Moreover, the entire procedure is reasonably quick-around 2 weeks for the urinary cell culture and 3-4 weeks for the reprogramming-and the yield of iPSC colonies is generally high-up to 4% using retroviral delivery of exogenous factors. Urinary iPSCs (UiPSCs) also show excellent differentiation potential, and thus represent a good choice for producing pluripotent cells from normal individuals or patients with genetic diseases, including those affecting the kidney.

Concepts: Kidney, Cell, Urine, Stem cell, Cell biology, Ureter, Induced pluripotent stem cell, Pluripotency