Discover the most talked about and latest scientific content & concepts.

Journal: Nature nanotechnology


Continued progress in high-speed computing depends on breakthroughs in both materials synthesis and device architectures. The performance of logic and memory can be enhanced significantly by introducing a memristor, a two-terminal device with internal resistance that depends on the history of the external bias voltage. State-of-the-art memristors, based on metal-insulator-metal (MIM) structures with insulating oxides, such as TiO2, are limited by a lack of control over the filament formation and external control of the switching voltage. Here, we report a class of memristors based on grain boundaries (GBs) in single-layer MoS2 devices. Specifically, the resistance of GBs emerging from contacts can be easily and repeatedly modulated, with switching ratios up to ∼10(3) and a dynamic negative differential resistance (NDR). Furthermore, the atomically thin nature of MoS2 enables tuning of the set voltage by a third gate terminal in a field-effect geometry, which provides new functionality that is not observed in other known memristive devices.

Concepts: Scientific method, Mathematics, Observation, Titanium dioxide, Memristor


Metamaterials are artificial substances that are structurally engineered to have properties not typically found in nature. To date, almost all metamaterials have been made from inorganic materials such as silicon and copper, which have unusual electromagnetic or acoustic properties that allow them to be used, for example, as invisible cloaks, superlenses or super absorbers for sound. Here, we show that metamaterials with unusual mechanical properties can be prepared using DNA as a building block. We used a polymerase enzyme to elongate DNA chains and weave them non-covalently into a hydrogel. The resulting material, which we term a meta-hydrogel, has liquid-like properties when taken out of water and solid-like properties when in water. Moreover, upon the addition of water, and after complete deformation, the hydrogel can be made to return to its original shape. The meta-hydrogel has a hierarchical internal structure and, as an example of its potential applications, we use it to create an electric circuit that uses water as a switch.

Concepts: DNA, Physics, Structure, Metamaterial, Superlens, Materials science, Invisibility, Metamaterial antennas


Structural DNA nanotechnology and the DNA origami technique, in particular, have provided a range of spatially addressable two- and three-dimensional nanostructures. These structures are, however, typically formed of tightly packed parallel helices. The development of wireframe structures should allow the creation of novel designs with unique functionalities, but engineering complex wireframe architectures with arbitrarily designed connections between selected vertices in three-dimensional space remains a challenge. Here, we report a design strategy for fabricating finite-size wireframe DNA nanostructures with high complexity and programmability. In our approach, the vertices are represented by n × 4 multi-arm junctions (n = 2-10) with controlled angles, and the lines are represented by antiparallel DNA crossover tiles of variable lengths. Scaffold strands are used to integrate the vertices and lines into fully assembled structures displaying intricate architectures. To demonstrate the versatility of the technique, a series of two-dimensional designs including quasi-crystalline patterns and curvilinear arrays or variable curvatures, and three-dimensional designs including a complex snub cube and a reconfigurable Archimedean solid were constructed.

Concepts: DNA, Nanotechnology, Design, DNA nanotechnology, Uniform polyhedron, DNA origami, Archimedean solid, Snub cube


The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.

Concepts: Physics, Light, Van der Waals force, Semiconductor, Boron, Boron nitride, P-n junction, Heterojunction


The synthesis of designer solid-state materials by living organisms is an emerging field in bio-nanotechnology. Key examples include the use of engineered viruses as templates for cobalt oxide (Co(3)O(4)) particles, superparamagnetic cobalt-platinum alloy nanowires and gold-cobalt oxide nanowires for photovoltaic and battery-related applications. Here, we show that the earthworm’s metal detoxification pathway can be exploited to produce luminescent, water-soluble semiconductor cadmium telluride (CdTe) quantum dots that emit in the green region of the visible spectrum when excited in the ultraviolet region. Standard wild-type Lumbricus rubellus earthworms were exposed to soil spiked with CdCl(2) and Na(2)TeO(3) salts for 11 days. Luminescent quantum dots were isolated from chloragogenous tissues surrounding the gut of the worm, and were successfully used in live-cell imaging. The addition of polyethylene glycol on the surface of the quantum dots allowed for non-targeted, fluid-phase uptake by macrophage cells.

Concepts: DNA, Gene, Cadmium, Solar cell, Earthworm, Lumbricidae, Annelids, Lumbricus terrestris


Silicon nanowire and nanopore arrays promise to reduce manufacturing costs and increase the power conversion efficiency of photovoltaic devices. So far, however, photovoltaic cells based on nanostructured silicon exhibit lower power conversion efficiencies than conventional cells due to the enhanced photocarrier recombination associated with the nanostructures. Here, we identify and separately measure surface recombination and Auger recombination in wafer-based nanostructured silicon solar cells. By identifying the regimes of junction doping concentration in which each mechanism dominates, we were able to design and fabricate an independently confirmed 18.2%-efficient nanostructured ‘black-silicon’ cell that does not need the antireflection coating layer(s) normally required to reach a comparable performance level. Our results suggest design rules for efficient high-surface-area solar cells with nano- and microstructured semiconductor absorbers.

Concepts: Semiconductor, Solar cell, Photovoltaics, Energy conversion efficiency, Germanium, Photovoltaic module, P-n junction, Carrier generation and recombination


Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electron-hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device.

Concepts: Density, Volume, Condensed matter physics, Density functional theory, Semiconductor, Liquid, Solar cell, Photovoltaics


The imminent limitations of electronic integrated circuits are stimulating intense activity in the area of nanophotonics for the development of on-chip optical components, and solutions incorporating direct-bandgap semiconductors are important in achieving this end. Optical processing of data at the nanometre scale is promising for circumventing these limitations, but requires the development of a toolbox of components including emitters, detectors, modulators, waveguides and switches. In comparison to components fabricated using top-down methods, semiconductor nanowires offer superior surface properties and stronger optical confinement. They are therefore ideal candidates for nanoscale optical network components, as well as model systems for understanding optical confinement. Here, we demonstrate all-optical switching in individual CdS nanowire cavities with subwavelength dimensions through stimulated polariton scattering, as well as a functional NAND gate built from multiple switches. The device design exploits the strong light-matter coupling present in these nanowires, leading to footprints that are a fraction of those of comparable silicon-based dielectric contrast and photonic crystal devices.

Concepts: Optics, Metamaterial, Integrated circuit, Semiconductor, Semiconductor device, Transistor, Photonics, Nanoelectronics


Self-assembly of block-copolymers provides a route to the fabrication of small (size, <50 nm) and dense (pitch, <100 nm) features with an accuracy that approaches even the demanding specifications for nanomanufacturing set by the semiconductor industry. A key requirement for practical applications, however, is a rapid, high-resolution method for patterning block-copolymers with different molecular weights and compositions across a wafer surface, with complex geometries and diverse feature sizes. Here we demonstrate that an ultrahigh-resolution jet printing technique that exploits electrohydrodynamic effects can pattern large areas with block-copolymers based on poly(styrene-block-methyl methacrylate) with various molecular weights and compositions. The printed geometries have diameters and linewidths in the sub-500 nm range, line edge roughness as small as ∼45 nm, and thickness uniformity and repeatability that can approach molecular length scales (∼2 nm). Upon thermal annealing on bare, or chemically or topographically structured substrates, such printed patterns yield nanodomains of block-copolymers with well-defined sizes, periodicities and morphologies, in overall layouts that span dimensions from the scale of nanometres (with sizes continuously tunable between 13 nm and 20 nm) to centimetres. As well as its engineering relevance, this methodology enables systematic studies of unusual behaviours of block-copolymers in geometrically confined films.

Concepts: Geometry, Semiconductor, Pattern, Methodology, Printing, Inkjet printer, Annealing


Understanding how nanomaterials interact with cell membranes is related to how they cause cytotoxicity and is therefore critical for designing safer biomedical applications. Recently, graphene (a two-dimensional nanomaterial) was shown to have antibacterial activity on Escherichia coli, but its underlying molecular mechanisms remain unknown. Here we show experimentally and theoretically that pristine graphene and graphene oxide nanosheets can induce the degradation of the inner and outer cell membranes of Escherichia coli, and reduce their viability. Transmission electron microscopy shows three rough stages, and molecular dynamics simulations reveal the atomic details of the process. Graphene nanosheets can penetrate into and extract large amounts of phospholipids from the cell membranes because of the strong dispersion interactions between graphene and lipid molecules. This destructive extraction offers a novel mechanism for the molecular basis of graphene’s cytotoxicity and antibacterial activity.

Concepts: Protein, Electron, Bacteria, Cell membrane, Atom, Nanomaterials, Graphene, Lipid bilayer