Discover the most talked about and latest scientific content & concepts.

Journal: Nanomedicine (London, England)


Pseudomonas aeruginosa is a pathogen that is prevalent in serious infections in compromised patients worldwide. A unique virulence factor of this bacterium is the redox-active molecule pyocyanin, which is a potential biomarker for the identification of P. aeruginosa infections. Here we report a direct, selective and rapid detection technique of pyocyanin.

Concepts: Pseudomonadales, Antibiotic resistance, Pseudomonas, Microbiology, Opportunistic infection, Immune system, Pseudomonas aeruginosa, Bacteria


To develop a novel plasmonic nanosensing technique to monitor the exposure levels of UV light for sunlight disease prevention.

Concepts: Sunscreen, Sunburn, Nanoparticle, Light therapy, Ultraviolet, Gold, Sunlight, Sun


Ocular drug delivery has seen several advances in the past few decades, with respect to new drugs, improved formulations, targeted delivery, as well as exploration of new routes of drug administration. New materials have been explored for encasing existing drugs, which can enhance treatment by increasing bioavailability, decreasing toxicity, providing better tissue adherence, targeted delivery as well as increased duration of action. The challenges and requirements are different for the anterior and posterior ocular segments. This review summarizes the recent advances in sustained ocular therapy, both to the anterior and posterior segments, which have been made possible, thanks to nanotechnology. We also discuss the distribution and fate of these nanocarriers themselves, postadministration, as well as clearance from ocular tissues.

Concepts: Better, Drugs, Eye, Tissue, Monotonic function, Drug, Pharmacology


Nano-diamino-tetrac (NDAT) targets a receptor on integrin αvβ3; αvβ3 is generously expressed by cancer cells and dividing endothelial cells and to a small extent by nonmalignant cells. The tetrac (tetraiodothyroacetic acid) of NDAT is covalently bound to a poly(lactic-co-glycolic acid) nanoparticle that encapsulates anticancer drugs. We report NDAT delivery efficiency of cisplatin to agent-susceptible urinary bladder cancer xenografts.

Concepts: Hematuria, Cystitis, Urology, Bladder cancer, Chemotherapy, Oncology, Cancer, Urinary bladder


To assess inflammation, cellular uptake and endocytic mechanisms of gold nanoparticles (AuNP) in human epidermal keratinocytes with and without a protein corona.

Concepts: Enzyme, Cell membrane, Nanoparticle, Gold, Cell


Our goal was to improve treatment outcomes for visceral leishmaniasis by designing nanocarriers that improve drug biodistribution and half-life. Thus, long-acting mannose-anchored thiolated chitosan amphotericin B nanocarrier complexes (MTC AmB) were developed and characterized.

Concepts: Leishmaniasis, Amphotericin B, Visceral leishmaniasis


To fabricate PEGylated liposomes which preserve the activity of hydrophobic Wnt3A protein, and to demonstrate their efficacy in promoting expansion of osteoprogenitors from human bone marrow.

Concepts: Bone, Cell, Cell biology, Stem cell, Bone marrow


The unique chemical and functional properties of nanoparticles can be harnessed for the delivery of large quantities of various therapeutic biomolecules. Active targeting of nanoparticles by conjugating ligands that bind to target cells strongly facilitates accumulation, internalization into target cells and longer retention at the target site, with consequent enhanced therapeutic effects. Recombinant antibodies with high selectivity and availability for a vast range of targets will dominate the future. In this review, we systematically outline the tremendous progress in the conjugation of antibodies to nanoparticles and the clear advantages that recombinant antibodies offer in the therapeutic targeting of nanoparticles. The demonstrated flexibility of recombinant antibody coupling to nanoparticles highlights the bright future of this technology for modern therapeutic nanomedicine.

Concepts: Protein, Target Corporation


With the purpose of delivering high doses of glabrescione B (GlaB) to solid tumors after systemic administration, long-circulating GlaB-loaded oil-cored polymeric nanocapsules (NC-GlaB) were formulated.

Concepts: Tumor


International Conference on Nanopore Technology (Shenzhen), 30 March-1 April 2017, Shenzhen, China The International Conference on Nanopore Technology (Shenzhen) was held from 30 March to 1 April 2017 in Shenzhen, China. The goal of the meeting was threefold: leverage the unique properties of nanopore technology to promote transformative advances in medicine, encourage cross-disciplinary collaborations in the research community within China and abroad; and discuss critical challenges that need to be addressed to rapidly advance the field. The meeting was chaired by Peixuan Guo, Endowed chair professor and Director of The Center for RNA Nanobiotechnology & Nanomedicine at The Ohio State University, USA and co-chaired by Xian-En Zhang, distinguished professor of the Institute of Biophysics, Chinese Academy of Sciences, China. The conference was attended by more than 300 academic researchers, hospital administrators, government leaders and scientists from many disciplines across the country from both academic institutions and industry.

Concepts: Hong Kong, Ohio State University, Management, Ohio, Tenure, United States, University, Science