SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Molecular therapy : the journal of the American Society of Gene Therapy

488

CRISPR-associated protein 9 (Cas9)-mediated genome editing provides a promising cure for HIV-1/AIDS; however, gene delivery efficiency in vivo remains an obstacle to overcome. Here, we demonstrate the feasibility and efficiency of excising the HIV-1 provirus in three different animal models using an all-in-one adeno-associated virus (AAV) vector to deliver multiplex single-guide RNAs (sgRNAs) plus Staphylococcus aureus Cas9 (saCas9). The quadruplex sgRNAs/saCas9 vector outperformed the duplex vector in excising the integrated HIV-1 genome in cultured neural stem/progenitor cells from HIV-1 Tg26 transgenic mice. Intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 excised HIV-1 proviral DNA and significantly reduced viral RNA expression in several organs/tissues of Tg26 mice. In EcoHIV acutely infected mice, intravenously injected quadruplex sgRNAs/saCas9 AAV-DJ/8 reduced systemic EcoHIV infection, as determined by live bioluminescence imaging. Additionally, this quadruplex vector induced efficient proviral excision, as determined by PCR genotyping in the liver, lungs, brain, and spleen. Finally, in humanized bone marrow/liver/thymus (BLT) mice with chronic HIV-1 infection, successful proviral excision was detected by PCR genotyping in the spleen, lungs, heart, colon, and brain after a single intravenous injection of quadruplex sgRNAs/saCas9 AAV-DJ/8. In conclusion, in vivo excision of HIV-1 proviral DNA by sgRNAs/saCas9 in solid tissues/organs can be achieved via AAV delivery, a significant step toward human clinical trials.

Concepts: Genetics, RNA, Bacteria, Molecular biology, Virus, DNA, Gene expression, Gene

168

Natural killer (NK) cells represent a key component of the innate immune system against cancer. Nevertheless, malignant diseases arise in immunocompetent individuals despite tumor immunosurveillance. Hodgkin lymphoma (HL) is characterized by CD30+ tumor cells and a massive infiltration of immune effector cells in affected lymph nodes. The latter obviously fail to eliminate the malignant cell population. Here, we tested for functional NK cell defects in HL and suggest an improvement of NK function by therapeutic means. We demonstrate that peripheral NK cells (pNK) from patients with HL fail to eliminate HL cell lines in ex vivo killing assays. Impaired NK cell function correlated with elevated serum levels of soluble ligands for NK cell receptors NKp30 (BAG6/BAT3) and NKG2D (MICA), factors known to constrict NK cell function. In vitro, NK cell cytotoxicity could be restored by an NKG2D/NKp30-independent bispecific antibody construct (CD30xCD16A). It artificially links the tumor receptor CD30 with the cytotoxicity NK cell receptor CD16A. Moreover, we observed that NK cells from patients treated with this construct were generally activated and displayed a restored cytotoxicity against HL target cells. These data suggest that reversible suppression of NK cell activity contributes to immune evasion in HL and can be antagonized therapeutically.Molecular Therapy (2013); doi:10.1038/mt.2013.14.

Concepts: Cytotoxicity, Protein, Innate immune system, Lymphocyte, Antibody, Cancer, Immune system, Natural killer cell

142

Chimeric antigen receptor T (CAR-T) cells have shown promising efficacy in treatment of hematological malignancies, but its applications in solid tumors need further exploration. In this study, we investigated CAR-T therapy targeting carcino-embryonic antigen (CEA)-positive colorectal cancer (CRC) patients with metastases to evaluate its safety and efficacy. Five escalating dose levels (DLs) (1 × 10(5) to 1 × 10(8)/CAR(+)/kg cells) of CAR-T were applied in 10 CRC patients. Our data showed that severe adverse events related to CAR-T therapy were not observed. Of the 10 patients, 7 patients who experienced progressive disease (PD) in previous treatments had stable disease after CAR-T therapy. Two patients remained with stable disease for more than 30 weeks, and two patients showed tumor shrinkage by positron emission tomography (PET)/computed tomography (CT) and MRI analysis, respectively. Decline of serum CEA level was apparent in most patients even in long-term observation. Furthermore, we observed persistence of CAR-T cells in peripheral blood of patients receiving high doses of CAR-T therapy. Importantly, we observed CAR-T cell proliferation especially in patients after a second CAR-T therapy. Taken together, we demonstrated that CEA CAR-T cell therapy was well tolerated in CEA(+) CRC patients even in high doses, and some efficacy was observed in most of the treated patients.

Concepts: Positron emission tomography, Neoplasm, Colorectal cancer, Lung cancer, Tumor, Protein, Oncology, Cancer

111

Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disorder caused by deficiency of iduronate 2-sulfatase (IDS), leading to accumulation of glycosaminoglycans (GAGs) in tissues of affected individuals, progressive disease, and shortened lifespan. Currently available enzyme replacement therapy (ERT) requires lifelong infusions and does not provide neurologic benefit. We utilized a zinc finger nuclease (ZFN)-targeting system to mediate genome editing for insertion of the human IDS (hIDS) coding sequence into a “safe harbor” site, intron 1 of the albumin locus in hepatocytes of an MPS II mouse model. Three dose levels of recombinant AAV2/8 vectors encoding a pair of ZFNs and a hIDS cDNA donor were administered systemically in MPS II mice. Supraphysiological, vector dose-dependent levels of IDS enzyme were observed in the circulation and peripheral organs of ZFN+donor-treated mice. GAG contents were markedly reduced in tissues from all ZFN+donor-treated groups. Surprisingly, we also demonstrate that ZFN-mediated genome editing prevented the development of neurocognitive deficit in young MPS II mice (6-9 weeks old) treated at high vector dose levels. We conclude that this ZFN-based platform for expression of therapeutic proteins from the albumin locus is a promising approach for treatment of MPS II and other lysosomal diseases.

Concepts: Genetics, Fabry disease, Therapy, Hunter syndrome, DNA, Gene, Lysosomal storage disease, Mucopolysaccharidosis

107

Adoptive cell therapy (ACT) is becoming a prominent alternative therapeutic treatment for cancer patients relapsing on traditional therapies. In parallel, antibodies targeting immune checkpoint molecules, such as cytotoxic-T-lymphocyte-associated antigen 4 (CTLA-4) and cell death protein 1 pathway (PD-1), are rapidly being approved for multiple cancer types, including as first line therapy for PD-L1-expressing non-small-cell lung cancer. The combination of ACT and checkpoint blockade could substantially boost the efficacy of ACT. In this study, we generated a novel self-delivering small interfering RNA (siRNA) (sdRNA) that knocked down PD-1 expression on healthy donor T cells as well as patient-derived tumor-infiltrating lymphocytes (TIL). We have developed an alternative chemical modification of RNA backbone for improved stability and increased efficacy. Our results show that T cells treated with sdRNA specific for PD-1 had increased interferon γ (IFN-γ) secreting capacity and that this modality of gene expression interference could be utilized in our rapid expansion protocol for production of TIL for therapy. TIL expanded in the presence of PD-1-specific sdRNA performed with increased functionality against autologous tumor as compared to control TIL. This method of introducing RNAi into T cells to modify the expression of proteins could easily be adopted into any ACT protocol and will lead to the exploration of new combination therapies.

48

The devastating neurodegenerative disease multiple sclerosis (MS) could substantially benefit from an adeno-associated virus (AAV) immunotherapy designed to restore a robust and durable antigen-specific tolerance. However, developing a sufficiently potent and lasting immune-regulatory therapy that can intervene in ongoing disease is a major challenge and has thus been elusive. We addressed this problem by developing a highly effective and robust tolerance-inducing in vivo gene therapy. Using a pre-clinical animal model, we designed a liver-targeting gene transfer vector that expresses full-length myelin oligodendrocyte glycoprotein (MOG) in hepatocytes. We show that by harnessing the tolerogenic nature of the liver, this powerful gene immunotherapy restores immune tolerance by inducing functional MOG-specific regulatory T cells (Tregs) in vivo, independent of major histocompatibility complex (MHC) restrictions. We demonstrate that mice treated prophylactically are protected from developing disease and neurological deficits. More importantly, we demonstrate that when given to mice with preexisting disease, ranging from mild neurological deficits to severe paralysis, the gene immunotherapy abrogated CNS inflammation and significantly reversed clinical symptoms of disease. This specialized approach for inducing antigen-specific immune tolerance has significant therapeutic potential for treating MS and other autoimmune disorders.

Concepts: Medicine, Virus, Myelin, Adeno-associated virus, Gene, Multiple sclerosis, Major histocompatibility complex, Immune system

36

X-linked myotubular myopathy (XLMTM) results from MTM1 gene mutations and myotubularin deficiency. Most XLMTM patients develop severe muscle weakness leading to respiratory failure and death, typically within 2 years of age. Our objective was to evaluate the efficacy and safety of systemic gene therapy in the p.N155K canine model of XLMTM by performing a dose escalation study. A recombinant adeno-associated virus serotype 8 (rAAV8) vector expressing canine myotubularin (cMTM1) under the muscle-specific desmin promoter (rAAV8-cMTM1) was administered by simple peripheral venous infusion in XLMTM dogs at 10 weeks of age, when signs of the disease are already present. A comprehensive analysis of survival, limb strength, gait, respiratory function, neurological assessment, histology, vector biodistribution, transgene expression, and immune response was performed over a 9-month study period. Results indicate that systemic gene therapy was well tolerated, prolonged lifespan, and corrected the skeletal musculature throughout the body in a dose-dependent manner, defining an efficacious dose in this large-animal model of the disease. These results support the development of gene therapy clinical trials for XLMTM.

Concepts: Muscular system, Adeno-associated virus, Immune system, Medicine, Genetics, DNA, Gene, Cancer

31

Recently, the World Health Organization confirmed 120 new human cases of avian H7N9 influenza in China resulting in 37 deaths, highlighting the concern for a potential pandemic and the need for an effective, safe, and high-speed vaccine production platform. Production speed and scale of mRNA-based vaccines make them ideally suited to impede potential pandemic threats. Here we show that lipid nanoparticle (LNP)-formulated, modified mRNA vaccines, encoding hemagglutinin (HA) proteins of H10N8 (A/Jiangxi-Donghu/346/2013) or H7N9 (A/Anhui/1/2013), generated rapid and robust immune responses in mice, ferrets, and nonhuman primates, as measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays. A single dose of H7N9 mRNA protected mice from a lethal challenge and reduced lung viral titers in ferrets. Interim results from a first-in-human, escalating-dose, phase 1 H10N8 study show very high seroconversion rates, demonstrating robust prophylactic immunity in humans. Adverse events (AEs) were mild or moderate with only a few severe and no serious events. These data show that LNP-formulated, modified mRNA vaccines can induce protective immunogenicity with acceptable tolerability profiles.

Concepts: Influenza vaccine, Vaccine, Vaccination, Smallpox, Immunology, Immune system, World Health Organization, Influenza

29

Tumor-associated antigens have emerged as important immunotherapeutic targets in the fight against cancer. Germline tumor antigens, such as WT1, Wilms' tumor gene 1, are overexpressed in many human malignancies but have low expression in somatic tissues. Recent vaccination approaches to target WT1 have been hampered by poor in vivo immune potency, likely due to the conserved self-antigen nature of WT1. In this study, we use a novel synthetic micro-consensus SynCon DNA vaccine approach with the goal of breaking tolerance and increasing vaccine immune potency. This approach induced new, neo-antigen-like responses that were superior to those induced by native WT1 DNA immunogens for driving T cell immunity and breaking tolerance. Non-human primates (NHPs) vaccinated with SynCon WT1 antigens elicited immune responses against native rhesus WT1 peptides. When delivered by electroporation (EP) in mice, SynCon-based WT1 constructs elicited strong CD4 and CD8 T cell responses (including IFN-γ, CD107a, and TNF-α) to both native and consensus peptides. In addition, SynCon WT1 vaccine-induced antibodies recognized native WT1 in vitro. Vaccination with the SynCon WT1 immunogens was capable of slowing tumor growth in therapeutic models in vivo. These data support the further study of synthetic consensus DNA vaccines for breaking tolerance to important germline antigens.

Concepts: Inoculation, Antibody, Smallpox, Antigen, Immunology, Vaccine, Vaccination, Immune system

29

Mucopolysaccharidosis (MPS) VI is due to a deficiency in the activity of N-acetylgalactosamine 4-sulfatase (4S), also known as arylsulfatase B. Previously, retroviral vector (RV)-mediated neonatal gene therapy reduced the clinical manifestations of MPS I and MPS VII in mice and dogs. However, sulfatases require post-translational modification by sulfatase-modifying factors. MPS VI cats were injected intravenously (i.v.) with a gamma RV-expressing feline 4S, resulting in 5 ± 3 copies of RV per 100 cells in liver. Liver and serum 4S activity were 1,450 ± 1,720 U/mg (26-fold normal) and 107 ± 60 U/ml (13-fold normal), respectively, and were directly proportional to the liver 4S protein levels for individual cats. This study suggests that sulfatase-modifying factor (SUMF) activity in liver was sufficient to result in active enzyme despite overexpression of 4S. RV-treated MPS VI cats achieved higher body weights and longer appendicular skeleton lengths, had reduced articular cartilage erosion, and reduced aortic valve thickening and aortic dilatation compared with untreated MPS VI cats, although cervical vertebral bone lengths were not improved. This demonstrates that therapeutic expression of a functional sulfatase protein can be achieved with neonatal gene therapy using a gamma RV, but some aspects of bone disease remain difficult to treat.

Concepts: Mucopolysaccharidosis VI, Amino acid, Molecular biology, Gene, Skeletal system, Sulfatase, Arylsulfatase B, Mucopolysaccharidosis