SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Molecular nutrition & food research

28

SCOPE: Cocoa and (-)-epicatechin (EC), a main cocoa flavanol, have been suggested to exert beneficial effects in diabetes, but the mechanism for their insulin-like effects remains unknown. In this study, the modulation of insulin signalling by EC and a cocoa phenolic extract (CPE) on hepatic HepG2 cells was investigated by analysing key proteins of the insulin pathways, namely insulin receptor, insulin receptor substrate (IRS) 1 and 2, PI3K/AKT and 5'-AMP-activated protein kinase (AMPK), as well as the levels of the glucose transporter GLUT-2 and the hepatic glucose production. METHODS AND RESULTS: EC and CPE enhanced the tyrosine phosphorylation and total insulin receptor, IRS-1 and IRS-2 levels and activated the PI3K/AKT pathway and AMPK in HepG2 cells. CPE also enhanced the levels of GLUT-2. Interestingly, EC and CPE modulated the expression of phosphoenolpyruvate carboxykinase, a key protein involved in the gluconeogenesis, leading to a diminished glucose production. In addition, EC- and CPE-regulated hepatic gluconeogenesis was prevented by the blockage of AKT and AMPK. CONCLUSION: Our data suggest that EC and CPE strengthen the insulin signalling by activating key proteins of that pathway and regulating glucose production through AKT and AMPK modulation in HepG2 cells.

Concepts: Protein, Signal transduction, Adenosine triphosphate, Enzyme, Insulin, Glucose, Hormone, Gluconeogenesis

28

Curcumin, the major extraction of turmeric, has been widely used in many countries for centuries both as a spice and as a medicine. In the last decade, researchers have found the beneficial effects of curcumin on multiple disorders are due to its antioxidative, anti-inflammatory, and antiproliferative properties, as well as its novel function as an inhibitor of histone aectyltransferases. In this review, we summarize the recent progress made on studying the beneficial effects of curcumin on multiple retinal diseases, including diabetic retinopathy, glaucoma, and age-related macular degeneration. Recent clinical trials on the effectiveness of phosphatidylcholine formulated curcumin in treating eye diseases have also shown promising results, making curcumin a potent therapeutic drug candidate for inflammatory and degenerative retinal and eye diseases.

Concepts: Medicine, Clinical trial, Effectiveness, Retina, Eye, Diabetic retinopathy, Macular degeneration, Curcumin

28

Sulforaphane (a potent anticarcinogenic isothiocyanate derived from glucoraphanin) is widely considered responsible for the protective effects of broccoli consumption. Broccoli is typically purchased fresh or frozen and cooked before consumption. We compared the bioavailability and metabolism of sulforaphane from portions of lightly cooked fresh or frozen broccoli, and investigated the bioconversion of sulforaphane to erucin.

Concepts: Nutrition, Sulforaphane, Cauliflower, Kale, Broccoli, Glucoraphanin

27

Curcumin revealed various health-beneficial properties in numerous studies. However its bioavailability is low due to its limited intestinal uptake and rapid metabolism. The aim of our project was to develop novel curcumin formulations with improved oral bioavailability and to study their safety as well as potential sex-differences.

Concepts: Cultural studies, Bioavailability

27

SCOPE: Daidzein is one of the major soy isoflavones. Following ingestion, daidzein is readily metabolized in the liver and converted into hydroxylated metabolites. One such metabolite is 6,7,4'-trihydroxyisoflavone (6,7,4'-THIF), which has been the focus of recent studies due to its various health benefits, however, its anti-adipogenic activity has not been investigated. Our objective was to determine the effects of 6,7,4'-THIF on adipogenesis in 3T3-L1 preadipocytes and elucidate the mechanisms of action involved. METHODS AND RESULTS: Adipogenesis was stimulated in 3T3-L1 preadipocytes. Both 6,7,4'-THIF and daidzein were treated in the presence and absence of mixture of isobutylmethylxanthine, dexamethasone, and insulin (MDI). We observed that 6,7,4'-THIF, but not daidzein, inhibited MDI-induced adipogenesis significantly at 40 and 80 μM, associated with decreased peroxisome proliferator-activated receptor-γ and C/EBP-α protein expression. 6,7,4'-THIF significantly suppressed MDI-induced lipid accumulation in the early stage of adipogenesis, attributable to a suppression of cell proliferation and the induction of cell cycle arrest. We also determined that 6,7,4'-THIF, but not daidzein, attenuated phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. 6,7,4'-THIF was found to inhibit PI3K activity via direct binding in an ATP-competitive manner. CONCLUSION: Our results suggest that 6,7,4'-THIF suppresses adipogenesis in 3T3-L1 preadipocytes by directly targeting PI3K. Soy isoflavones like 6,7,4'-THIF may have potential for development into novel treatment strategies for chronic obesity.

Concepts: Protein, Signal transduction, Metabolism, Liver, Soybean, Isoflavones, Genistein, Daidzein

27

SCOPE: There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. METHODS AND RESULTS: The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. CONCLUSION: We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention.

Concepts: Carbon dioxide, Cancer, Evolution, Metabolism, Organism, Mammal, Enzyme inhibitor, Chinese astrology

26

Hypothalamic astrogliosis and inflammation cause neural injury, playing a critical role in metabolic syndrome development. This study investigated whether and how fructose caused hypothalamic astrogliosis and inflammation in vivo and in vitro. The inhibitory effects of betaine on hypothalamic neural injury, astrogliosis and inflammation were explored to address its improvement of fructose-induced metabolic syndrome.

Concepts: Nervous system, Causality, Nutrition, Enzyme, In vivo, In vitro fertilisation, In vitro, Learning

24

Recently, casein glycomacropeptide (GMP)-derived peptide was found to possess potent antioxidant and anti-inflammatory activities. In the current study, the improvement effects and underlying molecular mechanisms of GMP-derived peptide on hepatic insulin resistance were investigated.

Concepts: Insulin, Glucose, Insulin resistance, Paracetamol, The Current

23

Well-controlled glycation (generally limited to the early stages) has been proposed as a strategy to improve the physiochemical properties of dietary proteins, but the functional studies of glycation products were mostly on advanced glycation end-products (AGEs) rather than early glycation products (EGPs). Since cytokines are important modulators of various biological processes, this study aimed to determine whether EGPs and AGEs affected immune homeostasis differentially and did so through modulating macrophage-derived factors.

Concepts: Immune system, Cancer, Metastasis, Cell division, Apoptosis, Obesity, Prostate cancer, Radiation therapy

23

Protein digestion is critical for infants. Dissimilarities between infants and adults in food intake and digestive physiology lead to distinct patterns of proteolysis between individuals. However, such differences are not well represented in many studies on protein digestion of baby foods. The complex biological structures of baby foods and the physiology of the infant digestive system are key factors affecting proteolysis during the first two years of life. Well-controlled in vitro studies have demonstrated that varying digestion conditions alter the specificity, rate, and extent of proteolysis of baby foods. Nonetheless, these models do not completely replicate in vivo proteolysis or the complex biogeography of the gastrointestinal tract. Animal and clinical studies have revealed the fate of dietary proteins along the digestive tract and the overall health impact on subjects. Building comprehensive and annotated datasets from human infants will require innovative and standardized measurement. Now, more systematic evaluations of digestion are emerging to advance the knowledge and its translation as food design for effective diet and health management in infants. This article is protected by copyright. All rights reserved.

Concepts: Protein, Metabolism, Nutrition, Digestive system, In vitro, Human gastrointestinal tract, Diet, Digestion