SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging

112

Immunotherapies include various approaches, ranging from stimulating effector mechanisms to counteracting inhibitory and suppressive mechanisms, and creating a forum for discussing the most effective means of advancing these therapies through imaging is the focus of the newly formed Imaging in Cellular and Immune Therapies (ICIT) interest group within the World Molecular Imaging Society. Efforts are being made in the identification and validation of predictive biomarkers for a number of immunotherapies. Without predictive biomarkers, a considerable number of patients may receive treatments that have no chance of offering a benefit. This will reflect poorly on the field of immunotherapy and will yield false hopes in patients while at the same time contributing to significant cost to the healthcare system. This review summarizes the main strategies in cancer immune and cell-based therapies and discusses recent advances in imaging strategies aimed to improve cancer immunotherapy outcomes.

Concepts: Immune system, Medicine, Focus, Imaging, Immunotherapy, Cancer immunotherapy, Molecular imaging

25

Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system.

Concepts: Oncology, Medical imaging, Implantable cardioverter-defibrillator, Atom, Brain tumor, Nuclear magnetic resonance, Magnetic resonance imaging, Radiology

23

The aim of this study was the automated synthesis of the mitochondrial membrane potential sensor 4-[(18)F]fluorobenzyl-triphenylphosphonium ([(18)F]FBnTP) on a commercially available synthesizer in activity yields (AY) that allow for imaging of multiple patients.

Concepts: Mitochondrion, Mitochondrial DNA, Organelle, Centrosome

19

Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

Concepts: DNA, Gene, Genetics, Bacteria, Evolution, Molecular biology, Biology, Organism

18

The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The “Molecular Imaging in Nanotechnology and Theranostics” (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is “in the pipeline” and has potential for clinical translation in the near future.

Concepts: The Key, World, Field, Exponential growth, The Reader, Place name disambiguation pages, Theranostics, Predictive medicine

18

Optical imaging methods have significant potential as effective intraoperative tools to visualize tissues, cells, and biochemical events aimed at objective assessment of the tumor margin and guiding the surgeon to adequately resect the tumor while sparing critical tissues. The wide variety of approaches to guide resection, the range of parameters that they detect, and the interdisciplinary nature involving biology, chemistry, engineering, and medicine suggested that there was a need for an organization that could review, discuss, refine, and help prioritize methods to optimize patient care and pharmaceutical and instrument development. To address these issues, the World Molecular Imaging Society created the Optical Surgical Navigation (OSN) interest group to bring together scientists, engineers, and surgeons to develop the field to benefit patients. Here, we provide an overview of approaches currently under clinical investigation for optical surgical navigation and offer our perspective on upcoming strategies.

Concepts: Medicine, Clinical trial, Patient, Hospital, Surgery, Physician, Surgeon, Imaging

18

Infectious diseases are a major threat to humanity, and it is imperative that we develop imaging tools that aid in their study, facilitate diagnosis, and guide treatment. The alarming rise of highly virulent and multi-drug-resistant pathogens, their rapid spread leading to frequent global pandemics, fears of bioterrorism, and continued life-threatening nosocomial infections in hospitals remain as major challenges to health care in the USA and worldwide. Early diagnosis and rapid monitoring are essential for appropriate management and control of infections. Tomographic molecular imaging enables rapid, noninvasive visualization, localization, and monitoring of molecular processes deep within the body and offers several advantages over traditional tools used for the study of infectious diseases. Noninvasive, longitudinal assessments could streamline animal studies, allow unique insights into disease pathogenesis, and expedite clinical translation of new therapeutics. Since molecular imaging is already in common use in the clinic, it could also become a valuable tool for clinical studies, for patient care, for public health, and for enabling precision medicine for infectious diseases.

Concepts: Health care, Medicine, Public health, Health, Epidemiology, Disease, Infectious disease, Infection

16

The association of Zika virus (ZIKV) infection and development of neurological sequelae require a better understanding of the pathogenic mechanisms causing severe disease. The purpose of this study was to evaluate the ability and sensitivity of positron emission tomography (PET) imaging using [(18)F]DPA-714, a translocator protein (TSPO) 18 kDa radioligand, to detect and quantify neuroinflammation in ZIKV-infected mice.

Concepts: Medical imaging, Positron emission tomography, Positron, Positron emission, Single photon emission computed tomography, Carbon-11, Fluorine-18, Radioligand

4

Prostate-specific membrane antigen (PSMA) is a recognized target for imaging prostate cancer. Here we present initial safety, biodistribution, and radiation dosimetry results with [(18)F]DCFPyL, a second-generation fluorine-18-labeled small-molecule PSMA inhibitor, in patients with prostate cancer.

Concepts: Cancer, Metastasis, Prostate cancer, Radiation therapy, Screening, Hormonal therapy, Dosimetry, Prostate specific membrane antigen

2

The tau tracer [(18)F]AV1451, also known as flortaucipir, is a promising ligand for imaging tau accumulation in Alzheimer’s disease (AD). Most of the previous studies have quantified tau load using standardized uptake value ratios (SUVr) derived from a static [(18)F]AV1451 scan. SUVr may, however, be flow dependent and, especially for longitudinal studies, should be validated against a fully quantitative approach. The objective of this study was to identify the optimal tracer kinetic model for measuring tau load using [(18)F]AV1451.

Concepts: Alzheimer's disease, Scientific method, Longitudinal study, Epidemiology, Positron emission tomography, Sociology, Apathy, Proteopathy