SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Molecular cell

217

Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an “evolvability factor” that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd’s role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with “anti-evolution” drugs)-in particular, Mfd-providing an unexplored route toward battling the AMR crisis.

172

Genome-wide DNA methylation reprogramming occurs in mouse primordial germ cells (PGCs) and preimplantation embryos, but the precise dynamics and biological outcomes are largely unknown. We have carried out whole-genome bisulfite sequencing (BS-Seq) and RNA-Seq across key stages from E6.5 epiblast to E16.5 PGCs. Global loss of methylation takes place during PGC expansion and migration with evidence for passive demethylation, but sequences that carry long-term epigenetic memory (imprints, CpG islands on the X chromosome, germline-specific genes) only become demethylated upon entry of PGCs into the gonads. The transcriptional profile of PGCs is tightly controlled despite global hypomethylation, with transient expression of the pluripotency network, suggesting that reprogramming and pluripotency are inextricably linked. Our results provide a framework for the understanding of the epigenetic ground state of pluripotency in the germline.

Concepts: DNA, Gene, Gene expression, Molecular biology, Histone, Epigenetics, DNA methylation, Methylation

138

Influenza virus RNA polymerase (FluPol), a heterotrimer composed of PB1, PB2, and PA subunits (P3 in influenza C), performs both transcription and replication of the viral RNA genome. For transcription, FluPol interacts with the C-terminal domain (CTD) of RNA polymerase II (Pol II), which enables FluPol to snatch capped RNA primers from nascent host RNAs. Here, we describe the co-crystal structure of influenza C virus polymerase (FluPolC) bound to a Ser5-phosphorylated CTD (pS5-CTD) peptide. The position of the CTD-binding site at the interface of PB1, P3, and the flexible PB2 C-terminal domains suggests that CTD binding stabilizes the transcription-competent conformation of FluPol. In agreement, both cap snatching and capped primer-dependent transcription initiation by FluPolC are enhanced in the presence of pS5-CTD. Mutations of amino acids in the CTD-binding site reduce viral mRNA synthesis. We propose a model for the activation of the influenza virus transcriptase through its association with pS5-CTD of Pol II.

73

Recent studies have revealed the importance of Ki-67 and the chromosome periphery in chromosome structure and segregation, but little is known about this elusive chromosome compartment. Here we used correlative light and serial block-face scanning electron microscopy, which we term 3D-CLEM, to model the entire mitotic chromosome complement at ultra-structural resolution. Prophase chromosomes exhibit a highly irregular surface appearance with a volume smaller than metaphase chromosomes. This may be because of the absence of the periphery, which associates with chromosomes only after nucleolar disassembly later in prophase. Indeed, the nucleolar volume almost entirely accounts for the extra volume found in metaphase chromosomes. Analysis of wild-type and Ki-67-depleted chromosomes reveals that the periphery comprises 30%-47% of the entire chromosome volume and more than 33% of the protein mass of isolated mitotic chromosomes determined by quantitative proteomics. Thus, chromatin makes up a surprisingly small percentage of the total mass of metaphase chromosomes.

Concepts: DNA, Cell nucleus, Chromosome, Cell cycle, Centromere, Mitosis, Metaphase, Chromatin

63

The CRISPR effector Cas13 could be an effective antiviral for single-stranded RNA (ssRNA) viruses because it programmably cleaves RNAs complementary to its CRISPR RNA (crRNA). Here, we computationally identify thousands of potential Cas13 crRNA target sites in hundreds of ssRNA viral species that can potentially infect humans. We experimentally demonstrate Cas13’s potent activity against three distinct ssRNA viruses: lymphocytic choriomeningitis virus (LCMV); influenza A virus (IAV); and vesicular stomatitis virus (VSV). Combining this antiviral activity with Cas13-based diagnostics, we develop Cas13-assisted restriction of viral expression and readout (CARVER), an end-to-end platform that uses Cas13 to detect and destroy viral RNA. We further screen hundreds of crRNAs along the LCMV genome to evaluate how conservation and target RNA nucleotide content influence Cas13’s antiviral activity. Our results demonstrate that Cas13 can be harnessed to target a wide range of ssRNA viruses and CARVER’s potential broad utility for rapid diagnostic and antiviral drug development.

60

The pandemic coronavirus SARS-CoV-2 threatens public health worldwide. The viral spike protein mediates SARS-CoV-2 entry into host cells and harbors a S1/S2 cleavage site containing multiple arginine residues (multibasic) not found in closely related animal coronaviruses. However, the role of this multibasic cleavage site in SARS-CoV-2 infection is unknown. Here, we report that the cellular protease furin cleaves the spike protein at the S1/S2 site and that cleavage is essential for S-protein-mediated cell-cell fusion and entry into human lung cells. Moreover, optimizing the S1/S2 site increased cell-cell, but not virus-cell, fusion, suggesting that the corresponding viral variants might exhibit increased cell-cell spread and potentially altered virulence. Our results suggest that acquisition of a S1/S2 multibasic cleavage site was essential for SARS-CoV-2 infection of humans and identify furin as a potential target for therapeutic intervention.

52

RNA flow between organisms has been documented within and among different kingdoms of life. Recently, we demonstrated horizontal RNA transfer between honeybees involving secretion and ingestion of worker and royal jellies. However, how the jelly facilitates transfer of RNA is still unknown. Here, we show that worker and royal jellies harbor robust RNA-binding activity. We report that a highly abundant jelly component, major royal jelly protein 3 (MRJP-3), acts as an extracellular non-sequence-specific RNA-aggregating factor. Multivalent RNA binding stimulates higher-order assembly of MRJP-3 into extracellular ribonucleoprotein granules that protect RNA from degradation and enhance RNA bioavailability. These findings reveal that honeybees have evolved a secreted dietary RNA-binding factor to concentrate, stabilize, and share RNA among individuals. Our work identifies high-order ribonucleoprotein assemblies with functions outside cells and organisms.

52

The CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing. We find that precision of DNA editing (i.e., recurrence of a specific indel) varies considerably among sites, with some targets showing one highly preferred indel and others displaying numerous infrequent indels. Editing precision correlates with editing efficiency and a preference for single-nucleotide homologous insertions. Precise targets and editing outcome can be predicted based on simple rules that mainly depend on the fourth nucleotide upstream of the protospacer adjacent motif (PAM). Indel profiles are robust, but they can be influenced by chromatin features. Our findings have important implications for clinical applications of CRISPR technology and reveal general patterns of broken end joining that can provide insights into DNA repair mechanisms.

50

Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.

Concepts: DNA, Protein, Gene, RNA, Ribosome, Protein biosynthesis, Genetic code, Transfer RNA

47

Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage.