SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Molecular carcinogenesis

159

Phosphatase and tensin homolog (PTEN) loss or mutation consistently activates the phosphatidylinositol 3-kinase (PI3-K)/Akt signaling pathway, which contributes to the progression and invasiveness of prostate cancer. Furthermore, the PTEN/PI3-K/Akt and Ras/MAPK pathways cooperate to promote the epithelial-mesenchymal transition (EMT) and metastasis initiated from prostate stem/progenitor cells. For these reasons, the PTEN/PI3-K/Akt pathway is considered as an attractive target for both chemoprevention and chemotherapy. Herein we report that eupafolin, a natural compound found in common sage, inhibited proliferation of prostate cancer cells. Protein content analysis indicated that phosphorylation of Akt and its downstream kinases was inhibited by eupafolin treatment. Pull-down assay and in vitro kinase assay results indicated that eupafolin could bind with PI3-K and attenuate its kinase activity. Eupafolin also exhibited tumor suppressive effects in vivo in an athymic nude mouse model. Overall, these results suggested that eupafolin exerts antitumor effects by targeting PI3-K. © 2014 Wiley Periodicals, Inc.

Concepts: Cancer, Metastasis, Oncology, Signal transduction, Enzyme, Prostate cancer, Kinase, AKT

29

The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway is involved in immune function and cell growth. We evaluated the association between genetic variation in JAK1 (10 SNPs), JAK2 (9 SNPs), TYK2 (5 SNPs), suppressors of cytokine signaling (SOCS)1 (2 SNPs), SOCS2 (2 SNPs), STAT1 (16 SNPs), STAT2 (2 SNPs), STAT3 (6 SNPs), STAT4 (21 SNPs), STAT5A (2 SNPs), STAT5B (3 SNPs), STAT6 (4 SNPs) with risk of colorectal cancer. We used data from population-based case-control studies (colon cancer n = 1555 cases, 1,956 controls; rectal cancer n = 754 cases, 959 controls). JAK2, SOCS2, STAT1, STAT3, STAT5A, STAT5B, and STAT6 were associated with colon cancer; STAT3, STAT4, STAT6, and TYK2 were associated with rectal cancer. Given the biological role of the JAK/STAT-signaling pathway and cytokines, we evaluated interaction with IFNG, TNF, and IL6; numerous statistically significant associations after adjustment for multiple comparisons were observed. The following statistically significant interactions were observed: TYK2 with aspirin/NSAID use; STAT1, STAT4, and TYK2 with estrogen status; and JAK2, STAT2, STAT4, STAT5A, STAT5B, and STAT6 with smoking status and colon cancer risk; JAK2, STAT6, and TYK2 with aspirin/NSAID use; JAK1 with estrogen status; STAT2 with cigarette smoking and rectal cancer. JAK2, SOCS1, STAT3, STAT5, and TYK2 were associated with colon cancer survival (hazard rate ratio (HRR) of 3.3 95% CI 2.01,5.42 for high mutational load). JAK2, SOCS1, STAT1, STAT4, and TYK2 were associated with rectal cancer survival (HRR 2.80 95% CI 1.63,4.80). These data support the importance of the JAK/STAT-signaling pathway in colorectal cancer and suggest targets for intervention. © 2011 Wiley Periodicals, Inc.

Concepts: Immune system, Gene expression, Cancer, Signal transduction, Colorectal cancer, Colon, Sigmoidoscopy, STAT protein

28

Vascular endothelial growth factor (VEGF) and its receptor kinase insert domain-containing receptor (KDR) play crucial roles in angiogenesis, which contributes to the development and progression of solid tumors. The aim of this study was to investigate the associations of VEGF (-2578C > A, -1154G > A, -634G > C, and 936C > T) and KDR (-604T > C and 1192G > A) polymorphisms with the development of colorectal cancer (CRC). A total of 882 participants (390 CRC patients and 492 controls) were enrolled in the study. The genotyping of VEGF and KDR polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism assay. We found that the CT and TT genotype of the 936C > T was associated with an increased risk of CRC compared with the CC genotype as the dominant model for the T allele. In addition, we also found a increased CRC risk with TC + CC genotype of KDR -604T > C compared with TT genotype in CRC patients and control subjects. Similarly, KDR 1192G > A also showed significant association between 1192G > A variants and risk of CRC. In the haplotype analyses, haplotype -2578A/-1154A/-634G/936T of VEGF polymorphisms and haplotype -604C/1192G and -604C/1192A of KDR polymorphisms were associated with an increased susceptibility of CRC. Our results suggest that the VEGF 936C > T, KDR -604T > C, and KDR 1192G > A polymorphisms may be contribute to CRC risk in the Korean population. © 2012 Wiley Periodicals, Inc.

Concepts: DNA, Cancer, Angiogenesis, Vascular endothelial growth factor, Single-nucleotide polymorphism, Genetic genealogy, Trigraph, Genotyping

24

Overexpression of MAGEA4 oncogene has been demonstrated in different malignancies; however, little is known about its exact mechanism for overexpression. TWIST1, as a bHLH transcription factor, activates a cell migration-invasion program involved in both embryonic and tumor development. Since MAGEA4 overexpression was statistically correlated to TWIST1, we aimed to elucidate the probable regulatory role of TWIST1 on MAGEA4 expression in KYSE30 cells.

Concepts: DNA, Gene, Genetics, Cell nucleus, Gene expression, Cancer, Transcription factor, Oncogene

11

Due to their beneficial nutritional profile the consumption of nuts contributes to a healthy diet and might reduce colon cancer risk. To get closer insights into potential mechanisms, the chemopreventive potential of different in vitro fermented nut varieties regarding the modulation of genes involved in detoxification (CAT, SOD2, GSTP1, GPx1) and cell cycle (p21, cyclin D2) as well as proliferation and apoptosis was examined in LT97 colon adenoma and primary epithelial colon cells. Fermentation supernatants (FS) of nuts significantly induced mRNA expression of CAT (up to 4.0 fold), SOD2 (up to 2.5 fold) and GSTP1 (up to 2.3 fold), while GPx1 expression was significantly reduced by all nut FS (0.8 fold on average). Levels of p21 mRNA were significantly enhanced (up to 2.6 fold), whereas all nut FS significantly decreased cyclin D2 expression (0.4 fold on average). In primary epithelial cells, expression of CAT (up to 3.5 fold), GSTP1 (up to 3.0 fold) and GPx1 (up to 3.9 fold) was increased, whereas p21 and cyclin D2 levels were not influenced. Nut FS significantly inhibited growth of LT97 cells and increased levels of early apoptotic cells (8.4% on average) and caspase 3 activity (4.6 fold on average), whereas caspase 3 activity was not modulated in primary colon cells. The differential modulation of genes involved in detoxification and cell cycle together with an inhibition of proliferation and induction of apoptosis in adenoma cells might contribute to chemopreventive effects of nuts regarding colon cancer. This article is protected by copyright. All rights reserved.

Concepts: DNA, Gene, Genetics, Cell nucleus, Gene expression, Cancer, Apoptosis, Cell cycle

4

Triple-negative breast tumors are very aggressive and contain relatively high proportion of cancer stem cells, and resistant to chemotherapeutic drugs including cisplatin. To overcome these limitations, we combined eugenol, a natural polyphenolic molecule with cisplatin to normalize cisplatin mediated toxicity and potential drug resistance. Interestingly, the combination treatment provided significantly greater cytotoxic and pro-apoptotic effects as compared to treatment with eugenol or cisplatin alone on several triple-negative breast cancer cells both in vitro and in vivo. Furthermore, adding eugenol to cisplatin potentiated the inhibition of breast cancer stem cells by inhibiting ALDH enzyme activity and ALDH-positive tumor initiating cells. We provide also clear evidence that eugenol potentiates cisplatin inhibition of the NF-κB signaling pathway. Indeed, the binding of NF-κB to its cognate binding sites present in the promoters of IL-6 and IL-8 was dramatically reduced, which led to potent down-regulation of the IL-6 and IL-8 cytokines upon combination treatment relative to the single agents. Similar effects were observed on proliferation, inhibition of epithelial-to-mesenchymal transition and stemness markers in tumor xenografts. These results provide strong preclinical justification for combining cisplatin with eugenol as therapeutic approach for triple-negative breast cancers through targeting the resistant ALDH-positive cells and inhibiting the NF-κB pathway. This article is protected by copyright. All rights reserved.

Concepts: Cancer, Breast cancer, Metastasis, Oncology, Cancer staging, Apoptosis, Chemotherapy, Neoplasm

3

Colorectal cancer (CRC) remains a significant cause of mortality. Inhibitors of cyclooxygenase (COX) and thus prostaglandin E2, are promising CRC preventives, but have significant toxicities. Ginger has been shown to inhibit COX, to decrease the incidence and multiplicity of adenomas, and decrease PGE2 concentrations in subjects at normal risk for CRC. This study was conducted to determine the effects of 2.0 g/d of ginger given orally on the levels of PGE2, leukotriene B4 (LTB4), 13-hydroxy-octadecadienoic acids, and 5-, 12-, & 15-hydroxyeicosatetraenoic acid, in the colonic mucosa of subjects at increased risk for CRC. We randomized 20 subjects to 2.0 g/d ginger or placebo for 28 d. At baseline and Day 28, a flexible sigmoidoscopy was used to obtain colon biopsies. A liquid chromatography mass spectrometry method was used to determine eicosanoid levels in the biopsies, and levels were expressed per amount of protein or free arachidonic acid (AA). There was a significant decrease in AA between baseline and Day 28 (P = 0.05) and significant increase in LTB4 (P = 0.04) when normalized to protein, in subjects treated with ginger versus placebo. No other changes in eicosanoids were observed. There was no difference between the groups in total adverse events (AE; P = 0.06). Ginger lacks the ability to decrease eicosanoid levels in people at increased risk for CRC. Ginger did appear to be both tolerable and safe; and could have chemopreventive effects through other mechanisms. Further investigation should focus on other markers of CRC risk in those at increased CRC risk. © 2014 Wiley Periodicals, Inc.

Concepts: Inflammation, Colon, Prostacyclin, Omega-6 fatty acid, Eicosanoid, Prostaglandin, Leukotriene, Arachidonic acid

2

Treatment with vemurafenib, a potent and selective inhibitor of mitogen-activated protein kinase signaling downstream of the BRAFV600E oncogene, elicits dramatic clinical responses in patients with metastatic melanoma. Unfortunately, the clinical utility of this drug is limited by a high incidence of drug resistance. Thus, there is an unmet need for alternative therapeutic strategies to treat vemurafenib-resistant metastatic melanomas. We have conducted high-throughput screening of two bioactive compound libraries (Siga and Spectrum libraries) against a metastatic melanoma cell line (A2058) and identified two structurally analogous compounds, deguelin and rotenone, from a cell viability assay. Vemurafenib-resistant melanoma cell lines, A2058R and A375R (containing the BRAFV600E mutation), also showed reduced proliferation when treated with these two compounds. Deguelin, a mitochondrial complex I inhibitor, was noted to significantly inhibit oxygen consumption in cellular metabolism assays. Mechanistically, deguelin treatment rapidly activates AMPK signaling, which results in inhibition of mTORC1 signaling and differential phosphorylation of mTORC1’s downstream effectors, 4E-BP1 and p70S6 kinase. Deguelin also significantly inhibited ERK activation and Ki67 expression without altering Akt activation in the same timeframe in the vemurafenib-resistant melanoma cells. These data posit that treatment with metabolic regulators, such as deguelin, can lead to energy starvation, thereby modulating the intracellular metabolic environment and reducing survival of drug-resistant melanomas harboring BRAF V600E mutations.

2

The need for more representative tools to investigate the human tumor microenvironment (TME) has led to the development of humanized mouse models. However, the difficulty of immune system engraftment and minimal human immune cell infiltration into implanted xenografts are major challenges. We have developed an improved method for generating mismatched humanized mice (mHM), using a dual infusion of human hematopoietic stem and progenitor cells (HSPCs) and mesenchymal stem cells (MSCs), isolated from cord blood and expanded in vitro. Engraftment with both HSPCs and MSCs produces mice with almost twice the percentage of human immune cells in their bone marrow, compared to mice engrafted with HSPCs alone, and yields 9- to 38-fold higher levels of mature peripheral human immune cells. We identified a peripheral mHM blood human B cell threshold that predicts an optimal degree of mouse bone marrow humanization. When head and neck squamous cell carcinoma (HNSCC) tumors are implanted on the flanks of HSPC-MSC engrafted mice, human T cells, B cells, and macrophages infiltrate the stroma of these tumors at 2- to 8-fold higher ratios. In dually HSPC-MSC engrafted mice we also more frequently observed additional types of immune cells, including regulatory T cells, cytotoxic T cells, and MDSCs. Higher humanization was associated with in vivo response to immune-directed therapy. The complex immune environment arising in tumors from dually HSPC-MSC engrafted mice better resembles that of the originating patient’s tumor, suggesting an enhanced capability to accurately recapitulate a human TME. This article is protected by copyright. All rights reserved.

2

The BrafV637E mutation is frequently reported in mouse hepatic tumors, depending on the mouse strain, and corresponds to the human BrafV600E mutation. In this study, we detected the BrafV637E mutation by whole-exome analysis in 4/4 hepatic tumors induced by neonatal treatment with diethylnitrosamine (DEN) in male B6C3F1 mice. We also detected the BrafV637E mutation in 54/63 (85.7%) hepatic lesions, including microscopic foci and grossly visible tumors, by PCR-direct sequencing. Although the mutation was detected in 5/7 (71.4%) hepatic tumors induced by neonatal DEN treatment followed by repeated CCl4 administration, it was not detected in 24 tumors induced by CCl4 treatment without DEN or in 8 spontaneous lesions in B6C3F1 mice, suggesting that the mutation is induced by the genotoxic action of DEN. The DEN-induced tumors exhibited hyperphosphorylation of ERK1 and Akt, suggesting that the BrafV637E mutation might activate the MAPK and Akt pathways. Moreover, the DEN-induced tumors overexpressed mRNAs for the oncogene-induced senescence (OIS) markers such as p15(Ink4b) and p19(Arf) as well as pro-survival/pro-proliferative cytokines/chemokines such as complement C5/C5a, ICAM-1, IL-1 receptor antagonist and CXCL9, suggesting that the BrafV637E mutation influences the expression of genes involved in either OIS or cellular growth/survival. Liver-specific expression of mutated Braf under control of the albumin enhancer/promoter resulted in an enlarged liver that consisted entirely of small basophilic hepatocytes resembling DEN-induced preneoplastic hepatocytes with ERK1/Akt hyperphosphorylation and C5/C5a overexpression. These results indicate that the BrafV637E mutation induces hepatocytic changes in DEN-induced hepatic tumors. This article is protected by copyright. All rights reserved.

Concepts: DNA, Gene, Gene expression, Cancer, Receptor, Liver, Mouse, Copyright