SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Micromachines

0

The formation of serrated chips is an important feature during machining of difficult-to-cut materials, such as titanium alloy, nickel based alloy, and some steels. In this study, Ti6Al4V alloys with equiaxial and acicular martensitic microstructures were adopted to analyze the effects of material structures on the formation of serrated chips in straight line micro orthogonal machining. The martensitic alloy was obtained using highly efficient electropulsing treatment (EPT) followed by water quenching. The results showed that serrated chips could be formed on both Ti6Al4V alloys, however the chip features varied with material microstructures. The number of chip segments per unit length of the alloy with martensite was more than that of the equiaxial alloy due to poor ductility. Besides, the average cutting and thrust forces were about 8.41 and 4.53 N, respectively, for the equiaxed Ti6Al4V alloys, which were consistently lower than those with a martensitic structure. The high cutting force of martensitic alloy is because of the large yield stress required to overcome plastic deformation, and this force is also significantly affected by the orientations of the martensite. Power spectral density (PSD) analyses indicated that the characteristic frequency of cutting force variation of the equiaxed alloy ranged from 100 to 200 Hz, while it ranged from 200 to 400 Hz for workpieces with martensites, which was supposedly due to the formation of serrated chips during the machining process.

0

Indoor navigation has been developing rapidly over the last few years. However, it still faces a number of challenges and practical issues. This paper proposes a novel WiFi/MEMS integration structure for indoor navigation. The two-stage structure uses the extended Kalman filter (EKF) to fuse the information from WiFi/MEMS sensors and contains attitude-determination EKF and position-tracking EKF. In the WiFi part, a partition solution called “moving partition” is originally proposed in this paper. This solution significantly reduces the computation time and enhances the performance of the traditional Weighted K-Nearest Neighbors (WKNN) method. Furthermore, the direction measurement is generated utilizing WiFi positioning results, and a “turn detection” is implemented to guarantee the effectiveness. The navigation performance of the presented integration structure has been verified through indoor experiments. The test results indicate that the proposed WiFi/MEMS solution works well. The root mean square (RMS) position error of WiFi/MEMS is 0.7926 m, which is an improvement of 20.59% and 36.60% when compared to MEMS and WiFi alone. Besides, the proposed algorithm still performs well with very few access points (AP) available and its stability has been proven.

0

This study established a microfluidic chip for the capture of A549 human lung circulating tumor cells via the aptamer-conjugated self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) in the channel. AuNPs are among the most attractive nanomaterials for the signal enhancement of biosensors owing to their unique chemical, physical, and mechanical properties. The microchip was fabricated using soft photolithography and casting and molding techniques. A self-assembly method was designed to attach AuNPs, cell-specific aptamers, and target cells onto the desired area (i.e., SAM area). In this study, the gold microelectrode configuration was characterized by fluorescence microscopy and impedance measurements to confirm the important modification steps. Subsequently, several investigations with the proposed assay were conducted with different cell samples to determine the specific binding ability of the device for A549 adenocarcinoma cancer cells. This work has ensured a simple, convenient, selective, and sensitive approach for the development of biosensors for lung cancer detection during the early stages.

0

Through combining P-type iterative learning (IL) control, model-free adaptive (MFA)control and sliding mode (SM) control, a robust model-free adaptive iterative learning (MFA-IL)control approach is presented for the active vibration control of piezoelectric smart structures.Considering the uncertainty of the interaction among actuators in the learning control process,MFA control is adopted to adaptively adjust the learning gain of the P-type IL control in order toimprove the convergence speed of feedback gain. In order to enhance the robustness of the systemand achieve fast response for error tracking, the SM control is integrated with the MFA control todesign the appropriate learning gain. Real-time feedback gains which are extracted fromcontrollers construct the basic probability functions (BPFs). The evidence theory is adopted to thedesign and experimental investigations on a piezoelectric smart cantilever plate are performed tovalidate the proposed control algorithm. The results demonstrate that the robust MFA-IL controlpresents a faster learning speed, higher robustness and better control performance in vibrationsuppression when compared with the P-type IL control.

0

A simple deep-ultraviolet (UV) absorption spectrophotometer based on ultraviolet light-emitting diode (UV LED) was developed for the detection of air-borne toluene with a good sensitivity. A fiber-coupled deep UV-LED was employed as a light source, and a spectrometer was used as a detector with a gas cell in between. 3D printed opto-fluidics connectors were designed to integrate the gas flow with UV light. Two types of hollow core waveguides (HCW) were tested as gas cells: a glass capillary tube with aluminum-coated inner walls and an aluminum capillary tube. The setup was tested for different toluene concentrations (10⁻100 ppm), and a linear relationship was observed with sensitivities of 0.20 mA·U/ppm and 0.32 mA·U/ppm for the glass and aluminum HCWs, respectively. The corresponding limits of detection were found to be 8.1 ppm and 12.4 ppm, respectively.

0

The optical performance of a periodically tunable plasma perfect metamaterial absorber based on a square-square-circle array we propose in the terahertz region is analyzed in this work by the finite difference time domain (FDTD) method. We not only discuss the impact of various parameters such as period a, length L, radius R, and incident angle θ under transverse magnetic ™- and transverse electric (TE)-polarization on the absorption spectra of the absorber but also study the effect of the Fermi energy EF and relaxation time τ. Finally, we simulate the spectra as the surrounding refractive index n changes to better evaluate the sensing performance of the structure, producing a sensitivity S of the structure of up to 15006 nm/RIU. On account of this research, we find that the absorber is beneficial to sensors and detectors in the terahertz region.

0

We study the effect of etching depth on the threshold characteristics of GaSb-based middle infrared (Mid-IR) photonic-crystal surface-emitting lasers (PCSELs) with different lattice periods. The below-threshold emission spectra are measured to identify the bandgap as well as band-edge modes. Moreover, the bandgap separation widens with increasing etching depth as a result of enhanced diffraction feedback coupling. However, the coupling is nearly independent of lattice period. The relationship between threshold gain and Bragg detuning is also experimentally determined for PCSELs and is similar to that calculated theoretically for one-dimensional distributed feedback lasers.

0

Many researchers have fabricated micro and nanofluidic devices incorporating optical, chemical, and electrical detection systems with the aim of achieving on-chip analysis of macromolecules. The present study demonstrates a label-free detection of DNA using a nanofluidic device based on impedance measurements that is both sensitive and simple to operate. Using this device, the electrophoresis and dielectrophoresis effect on DNA conformation and the length dependence were examined. A low alternating voltage was applied to the nanogap electrodes to generate a high intensity field (>0.5 MV/m) under non-faradaic conditions. In addition, a 100 nm thick gold electrode was completely embedded in the substrate to allow direct measurements of a solution containing the sample passing through the gap, without any surface modification required. The high intensity field in this device produced a dielectrophoretic force that stretched the DNA molecule across the electrode gap at a specific frequency, based on back and forth movements between the electrodes with the DNA in a random coil conformation. The characteristics of 100 bp, 500 bp, 1 kbp, 5 kbp, 10 kbp, and 48 kbp λ DNA associated with various conformations were quantitatively analyzed with high resolution (on the femtomolar level). The sensitivity of this system was found to be more than about 10 orders of magnitude higher than that obtained from conventional linear alternating current (AC) impedance for the analysis of bio-polymers. This new high-sensitivity process is expected to be advantageous with regard to the study of complex macromolecules and nanoparticles.

0

Microfluidic systems have witnessed rapid development in recent years. As one of the most common structures, the micro-orifice is always included inside microfluidic systems. Hydrodynamic cavitation in the micro-orifice has been experimentally discovered and is harmful to microfluidic systems. This paper investigates cavitating flow through a micro-orifice. A rectangular micro-orifice with a l/d ratio varying from 0.25 to 4 was selected and the pressure difference between the inlet and outlet varied from 50 to 300 kPa. Results show that cavitation intensity increased with an increase in pressure difference. Decreasing exit pressure led to a decrease in cavitation number and cavitation could be prevented by increasing the exit pressure. In addition, the vapor cavity also increased with an increase in pressure difference and l/d ratio. Results also show the pressure ratio at cavitation inception was 1.8 when l/d was above 0.5 and the cavitation number almost remained constant when l/d was larger than 2. Moreover, there was an apparent difference in cavitation number depending on whether l/d was larger than 1.

0

Forceps are essential tools for digital nerve manipulation during digital nerve repair surgery. However, surgeons have to operate forceps with extreme caution to prevent detrimental post-operative complications caused by over-gripping force. Their intrinsically safe characteristics have led to the increasing adoption of soft robotics in various biomedical applications. In this paper, a miniaturized hybrid soft surgical gripper is proposed for safe nerve manipulation in digital nerve repair surgery. This new surgical gripper includes a soft inflatable actuator and a gripper shell with a hook-shaped structure. The ability to achieve a compliant grip and safe interaction with digital nerves is provided by the inflated soft pneumatic actuator, while the rigid hook retractor still allows surgeons to scoop up the nerve from its surrounding tissues during surgery. The performance of the proposed surgical gripper was evaluated by the contact/pulling force sensing experiments and deformation measurement experiments. In the cadaver experiments, this new surgical gripper was able to complete the required nerve manipulation within the limited working space. The average deformation of the digital nerve with an average diameter of 1.45 mm gripped by the proposed surgical gripper is less than 0.22 mm. The average deformity is less than 15% of its original diameter.