SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Medical engineering & physics

3

To develop a method that segments preterm EEG into bursts and inter-bursts by extracting and combining multiple EEG features.

Concepts: Childbirth, Magnesium sulfate, Preterm birth

2

Functional electrical stimulation (FES) has shown effectiveness in restoring upper-limb movement post-stroke when applied to assist participants' voluntary intention during repeated, motivating tasks. Recent clinical trials have used advanced controllers that precisely adjust FES to assist functional reach and grasp tasks with FES applied to three muscle groups, showing significant reduction in impairment. The system reported in this paper advances the state-of-the-art by: (1) integrating an FES electrode array on the forearm to assist complex hand and wrist gestures; (2) utilising non-contact depth cameras to accurately record the arm, hand and wrist position in 3D; and (3) employing an interactive touch table to present motivating virtual reality (VR) tasks. The system also uses iterative learning control (ILC), a model-based control strategy which adjusts the applied FES based on the tracking error recorded on previous task attempts. Feasibility of the system has been evaluated in experimental trials with 2 unimpaired participants and clinical trials with 4 hemiparetic, chronic stroke participants. The stroke participants attended 17, 1 hour training sessions in which they performed functional tasks, such as button pressing using the touch table and closing a drawer. Stroke participant results show that the joint angle error norm reduced by an average of 50.3% over 6 attempts at each task when assisted by FES.

Concepts: Clinical trial, Participation, Stroke, Traumatic brain injury, Effectiveness, Task, Virtual reality, Baseball

2

In this study, we present a method for measuring functional magnetic resonance imaging (fMRI) signal complexity using fuzzy approximate entropy (fApEn) and compare it with the established sample entropy (SampEn). Here we use resting state fMRI dataset of 86 healthy adults (41 males) with age ranging from 19 to 85 years. We expect the complexity of the resting state fMRI signals measured to be consistent with the Goldberger/Lipsitz model for robustness where healthier (younger) and more robust systems exhibit more complexity in their physiological output and system complexity decrease with age. The mean whole brain fApEn demonstrated significant negative correlation (r = -0.472, p<0.001) with age. In comparison, SampEn produced a non-significant negative correlation (r = -0.099, p = 0.367). fApEn also demonstrated a significant (p < 0.05) negative correlation with age regionally (frontal, parietal, limbic, temporal and cerebellum parietal lobes). There was no significant correlation regionally between the SampEn maps and age. These results support the Goldberger/Lipsitz model for robustness and have shown that fApEn is potentially a sensitive new method for the complexity analysis of fMRI data.

Concepts: Brain, Measurement, Brain tumor, Magnetic resonance imaging, Cerebrum, Snake scales, Control theory, Frontal lobe

1

Implant loosening - commonly linked with elevated initial micromotion - is the primary indication for total ankle replacement (TAR) revision. Finite element modelling has not been used to assess micromotion of TAR implants; additionally, the biomechanical consequences of TAR malpositioning - previously linked with higher failure rates - remain unexplored. The aim of this study was to estimate implant-bone micromotion and peri-implant bone strains for optimally positioned and malpositioned TAR prostheses, and thereby identify fixation features and malpositioning scenarios increasing the risk of loosening. Finite element models simulating three of the most commonly used TAR devices (BOX(®), Mobility(®) and Salto(®)) implanted into the tibia/talus and subjected to physiological loads were developed. Mobility and Salto demonstrated the largest micromotion of all tibial and talar components, respectively. Any malpositioning of the implant creating a gap between it and the bone resulted in a considerable increase in micromotion and bone strains. It was concluded that better primary stability can be achieved through fixation nearer to the joint line and/or while relying on more than a single peg. Incomplete seating on the bone may result in considerably elevated implant-bone micromotion and bone strains, thereby increasing the risk for TAR failure.

Concepts: Finite element method, Implants, Dental implant, Failure rate, The Implant, Finite element method in structural mechanics, Order theory, Result

1

The plantar soft tissue is a highly functional viscoelastic structure involved in transferring load to the human body during walking. A Soft Tissue Response Imaging Device was developed to apply a vertical compression to the plantar soft tissue whilst measuring the mechanical response via a combined load cell and ultrasound imaging arrangement. Accuracy of motion compared to input profiles; validation of the response measured for standard materials in compression; variability of force and displacement measures for consecutive compressive cycles; and implementation in vivo with five healthy participants. Static displacement displayed average error of 0.04 mm (range of 15 mm), and static load displayed average error of 0.15 N (range of 250 N). Validation tests showed acceptable agreement compared to a Houndsfield tensometer for both displacement (CMC > 0.99 RMSE > 0.18 mm) and load (CMC > 0.95 RMSE < 4.86 N). Device motion was highly repeatable for bench-top tests (ICC = 0.99) and participant trials (CMC = 1.00). Soft tissue response was found repeatable for intra (CMC > 0.98) and inter trials (CMC > 0.70). The device has been shown to be capable of implementing complex loading patterns similar to gait, and of capturing the compressive response of the plantar soft tissue for a range of loading conditions in vivo.

Concepts: Participation, Measurement, Tissues, Continuum mechanics, Human body, Materials science, Soft tissue, Design

1

Gait is an important clinical assessment tool since changes in gait may reflect changes in general health. Measurement of gait is a complex process which has been restricted to the laboratory until relatively recently. The application of an inexpensive body worn sensor with appropriate gait algorithms (BWM) is an attractive alternative and offers the potential to assess gait in any setting. In this study we investigated the use of a low-cost BWM, compared to laboratory reference using a robust testing protocol in both younger and older adults. We observed that the BWM is a valid tool for estimating total step count and mean spatio-temporal gait characteristics however agreement for variability and asymmetry results was poor. We conducted a detailed investigation to explain the poor agreement between systems and determined it was due to inherent differences between the systems rather than inability of the sensor to measure the gait characteristics. The results highlight caution in the choice of reference system for validation studies. The BWM used in this study has the potential to gather longitudinal (real-world) spatio-temporal gait data that could be readily used in large lifestyle-based intervention studies, but further refinement of the algorithm(s) is required.

Concepts: Algorithm, Evaluation, Measurement, Assessment, Clinical psychology, Cultural studies, Microelectromechanical systems

0

Body segment parameters such as segment mass, centre of mass and moment of inertia, serve as important inputs for musculoskeletal modelling. These parameters are normally derived from regression tables; however, can be poorly representative of the study population with variations of up to 40% recorded between different tables. More recent methods, such as 3D scanning, present a rapid and accurate way to produce subject-specific body segment parameters for use in musculoskeletal models. An infra-red 3D scanner was used to produce full-body scans of 95 males and females. Each was put through an algorithm to calculate bespoke segment mass, centre of mass and inertial properties for each segment of the body, with results comparable to cadaveric data. These methods could be used to increase the specificity of musculoskeletal modelling outputs for individual subjects, improving the accuracy of modelling outputs in biomechanics-related research.

0

The aim of this study was to perform a finite element and experimental comparative analysis of the mechanical characteristics of surgical drill bits used in bone and joint surgery applications with and without an irrigation channel. Internally cooled drills are very efficient in maintaining the drilling temperature below the critical level. However, a cooling channel could potentially have a negative influence on the drill structure, particularly in the flutes zone. A commercially available type of surgical drill bit without irrigation channel and a modified variant with the built-in channel were simultaneously loaded with torque, axial and bending forces with magnitudes similar to and higher than those utilized in clinical practice. When loaded under the same conditions, both types of drills showed very similar mechanical properties in the sense of the average von Mises stress in chosen sections and the deflections after plastic deformation. The highest stress was observed in the bending zone which was located at the beginning of the flutes section of the drill. All analysed drills suffered only from plastic deformation without any breakage despite the fact that they were loaded with forces higher than those expected in normal operational conditions.

0

Endothelial cells have many important roles in the cardiovascular system, such as controlling vasomotor actions and hemostasis. In the event of endothelial cell dysfunction, the risk of cardiovascular disease increases. Therefore, the objective of this study was to investigate the early detection and diagnosis of endothelial cell dysfunction. Injury and restoration in vascular endothelial cells exposed to ischemic stress may affect changes in the electrical impedance. We measured the status of the endothelial cell layer by using microelectrochemical impedance spectroscopy. We used cultured rat primary vascular endothelial cells to measure the electrical impedance under different conditions (control, ischemia, and recovery). Our results revealed that the electrical impedance in vascular endothelial cells under different conditions has quantitatively distinct values. At the optimal frequency, the real parts (ZR) of the impedances for the control group, ischemic group, and recovery group were 0.54 kΩ, 0.28 kΩ, and 0.58 kΩ, respectively. The imaginary parts (ZI) of the impedances for each group were - 0.19 kΩ, - 0.12 kΩ, and - 0.18 kΩ, respectively. The values for both the recovery group and control group were similar. In this context, electrical impedance measurement could be considered as possible method for direct detection of vascular endothelial cell injury in ischemic conditions. To the best of our knowledge, this study is the first attempt to measure changes in the electrical impedance of vascular endothelial cells during ischemic damage and the recovery processes.

0

Revision total knee arthroplasty (RTKA) has poorer results than primary total knee arthroplasty (TKA), and the prostheses are invasive and cause strain-shielding of the bones near the knee. This paper describes an RTKA system with extracortical fixation. It was hypothesised that this would reduce strain-shielding compared with intramedullary fixation.