SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Materials (Basel, Switzerland)

138

Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

Concepts: Electron, Electron microscope, Effect, Effectiveness, Tensile strength, Transmission electron microscopy, Scanning electron microscope, Charpy impact test

138

The new three-dimensional structure that the graphene connected with SWCNTs (G-CNTs, Graphene Single-Walled Carbon Nanotubes) can solve graphene and CNTs' problems. A comprehensive study of the mechanical and electrical performance of the junctions was performed by first-principles theory. There were eight types of junctions that were constituted by armchair and zigzag graphene and (3,3), (4,0), (4,4), and (6,0) CNTs. First, the junction strength was investigated. Generally, the binding energy of armchair G-CNTs was stronger than that of zigzag G-CNTs, and it was the biggest in the armchair G-CNTs (6,0). Likewise, the electrical performance of armchair G-CNTs was better than that of zigzag G-CNTs. Charge density distribution of G-CNTs (6,0) was the most homogeneous. Next, the impact factors of the electronic properties of armchair G-CNTs were investigated. We suggest that the band gap is increased with the length of CNTs, and its value should be dependent on the combined effect of both the graphene’s width and the CNTs' length. Last, the relationship between voltage and current (U/I) were studied. The U/I curve of armchair G-CNTs (6,0) possessed a good linearity and symmetry. These discoveries will contribute to the design and production of G-CNT-based devices.

Concepts: Electric charge, Carbon, Carbon nanotube, Allotropes of carbon, Graphite, Graphene, Tensile strength, Charge density

138

The frequent instability of mandibular removable complete dentures affects patient Oral Health Related Quality of Life (OHRQoL). An innovative therapeutic strategy used to improve stability involves placing four symphyseal mini-implants. This study was aimed at assessing OHRQoL over time in subjects in which mini-implants were placed and exploring if certain parameters could predict the evolution of their OHRQoL. The OHRQoL of subjects with dentures was assessed using the Geriatric Oral Health Assessment Index (GOHAI) before (T0), 2-6 months (T1), twelve months (T2) and twenty-four or more months (T3) after mini-implant setting. Age, gender and chewing ability were tested as explanatory variables for the change in OHRQoL with time. Thirteen women and six men were included (mean age: 69 ± 10 years). After treatment, mean GOHAI scores at T1, T2 and T3 increased significantly (p < 0.001). The GOHAI-Add mean score was not affected by age or gender. Baseline chewing ability impacted the "functional" and "pain and discomfort" fields of the mean GOHAI scores (p < 0.05). The OHRQoL quickly improved after mini-implant placement in complete denture wearers and then stabilized over time. Baseline chewing ability can be used as a predictive parameter of OHRQoL.

Concepts: Scientific method, Medicine, Future, Dentistry, Dentures, Removable partial denture, Currying

138

The elastoplastic deformation behaviors of hollow glass microspheres/iron syntactic foam under tension were modeled using a representative volume element (RVE) approach. The three-dimensional microstructures of the iron syntactic foam with 5 wt % glass microspheres were reconstructed using the random sequential adsorption algorithm. The constitutive behavior of the elastoplasticity in the iron matrix and the elastic-brittle failure for the glass microsphere were simulated in the models. An appropriate RVE size was statistically determined by evaluating elastic modulus, Poisson’s ratio, and yield strength in terms of model sizes and boundary conditions. The model was validated by the agreement with experimental findings. The tensile deformation mechanism of the syntactic foam considering the fracture of the microspheres was then investigated. In addition, the feasibility of introducing the interfacial deboning behavior to the proposed model was briefly investigated to improve the accuracy in depicting fracture behaviors of the syntactic foam. It is thought that the modeling techniques and the model itself have major potential for applications not only in the study of hollow glass microspheres/iron syntactic foams, but also for the design of composites with a high modulus matrix and high strength reinforcement.

Concepts: Tensile strength, Young's modulus, Elasticity, Solid mechanics, Hooke's law, Deformation, Glass microsphere, Syntactic foam

136

The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α ′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α ′ -martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading.

Concepts: Fundamental physics concepts, Injection molding, Materials science, Stainless steel, Compressive stress, Foams, Metal injection molding, Syntactic foam

136

Given the long-term problem of polyethylene wear, medical interest in the new improved cross-linked polyethylene (XLPE), with or without the adding of vitamin E, has risen. The main aim of this study is to gain further insights into the mutual effects of radiation cross-linking and addition of vitamin E on the wear performance of ultra-high-molecular-weight polyethylene (UHMWPE). We tested four different batches of polyethylene (namely, a standard one, a vitamin E-stabilized, and two cross-linked) in a hip joint simulator for five million cycles where bovine calf serum was used as lubricant. The acetabular cups were then analyzed using a confocal profilometer to characterize the surface topography. Moreover; the cups were analyzed by using Fourier Transformed Infrared Spectroscopy and Differential Scanning Calorimetry in order to assess the chemical characteristics of the pristine materials. Comparing the different cups' configuration, mass loss was found to be higher for standard polyethylene than for the other combinations. Mass loss negatively correlated to the cross-link density of the polyethylenes. None of the tested formulations showed evidence of oxidative degradation. We found no correlation between roughness parameters and wear. Furthermore, we found significantly differences in the wear behavior of all the acetabular cups. XLPEs exhibited lower weight loss, which has potential for reduced wear and decreased osteolysis. However, surface topography revealed smoother surfaces of the standard and vitamin E stabilized polyethylene than on the cross-linked samples. This observation suggests incipient crack generations on the rough and scratched surfaces of the cross-linked polyethylene liners.

Concepts: Polyethylene, Cross-link, Roughness, Cross-linked polyethylene, Ultra high molecular weight polyethylene

133

We present a mask-free strategy for fabricating two-dimensional subwavelength periodic triangular arrays on tungsten, by focusing two orthogonally polarized and temporally delayed femtosecond laser beams using a cylindrical lens. In stark contrast to the commonly observed structures of either a single ablation spot or a one-dimensional grating, we obtained highly uniform periodic triangular arrays on the laser-exposed surface, with three equilateral sides each of 480 nm in length and about 100 nm in modulation depth. The triangular features varied with both the laser energy and the scanning speed. We found that the optical reflectivity of such a surface reduces significantly within the spectral range of 700⁻2500 nm. The triangular structure morphology can also be controlled by varying the time delay between the two laser beams.

131

Aluminium layers were coated onto the surface of pure titanium using hot-dip aluminising technology, and then the aluminium layers were in situ oxidised to form oxide ceramic coatings, using the micro-arc oxidation (MAO) technique. The microstructure and composition distribution of the hot-dip aluminium coatings and ceramic layers were studied by using scanning electron microscopy and energy-dispersive X-ray spectroscopy. The phase structure of the MAO layers was studied using X-ray diffraction. The surface composition of the MAO layer was studied by X-ray photoelectron spectroscopy. The wear resistance of the pure titanium substrate and the ceramic layers coated on its surface were evaluated by using the ball-on-disc wear method. Therefore, aluminising coatings, which consist of a diffusion layer and a pure aluminium layer, could be formed on pure titanium substrates using the hot-dip aluminising method. The MAO method enabled the in-situ oxidation of hot-dip pure aluminium layers, which subsequently led to the formation of ceramic layers. Moreover, the wear resistance values of the ceramic layers were significantly higher than that of the pure titanium substrate.

28

Nickel oxide (NiO) is one of the most promising and high-performing Hole Transporting Layer (HTL) in inverted perovskite solar cells due to ideal band alignment with perovskite absorber, wide band gap, and high mobility of charges. At the same time, however, NiO does not provide good contact and trap-free junction for hole collection. In this paper, we examine this problem by developing a double hole transport configuration with a copper iodide (CuI) interlayer for efficient surface passivation. Transient photo-current (TPC) measurements showed that Perovskite/HTL interface with CuI interlayer has an improved hole injection; CuI passivation reduces the concentration of traps and the parasitic charge accumulation that limits the flow of charges. Moreover, we found that CuI protect the HTL/perovskite interface from degradation and consequently improve the stability of the cell. The presence of CuI interlayer induces an improvement of open-circuit voltage VOC (from 1.02 V to 1.07 V), an increase of the shunt resistance RSH (100%), a reduction of the series resistance RS (-30%), and finally a +10% improvement of the solar cell efficiency.

21

One of the most critical challenges for the successful adoption of nuclear fusion power corresponds to plasma-facing materials. Due to its favorable properties in this context (low sputtering yield, high thermal conductivity, high melting point, among others), tungsten is a leading candidate material. Nevertheless, tungsten is affected by the plasma and fusion byproducts. Irradiation by helium nuclei, in particular, strongly modifies the surface structure by a synergy of processes, whose origin is the nucleation and growth of helium bubbles. In this review, we present recent advances in the understanding of helium effects in tungsten from a simulational approach based on accelerated molecular dynamics, which emphasizes the use of realistic parameters, as are expected in experimental and operational fusion power conditions.