Discover the most talked about and latest scientific content & concepts.

Journal: Marine pollution bulletin


Our understanding of global seagrass ecosystems comes largely from regions characterized by human impacts with limited data from habitats defined as notionally pristine. Seagrass assessments also largely focus on shallow-water coastal habitats with comparatively few studies on offshore deep-water seagrasses. We satellite tracked green turtles (Chelonia mydas), which are known to forage on seagrasses, to a remote, pristine deep-water environment in the Western Indian Ocean, the Great Chagos Bank, which lies in the heart of one of the world’s largest marine protected areas (MPAs). Subsequently we used in-situ SCUBA and baited video surveys to survey the day-time sites occupied by turtles and discovered extensive monospecific seagrass meadows of Thalassodendron ciliatum. At three sites that extended over 128 km, mean seagrass cover was 74% (mean range 67-88% across the 3 sites at depths to 29 m. The mean species richness of fish in seagrass meadows was 11 species per site (mean range 8-14 across the 3 sites). High fish abundance (e.g. Siganus sutor: mean = 38.0, SD = 53.7, n = 5) and large predatory shark (Carcharhinus amblyrhynchos) (mean = 1.5, SD = 0.4, n = 5) were recorded at all sites. Such observations of seagrass meadows with large top predators, are limited in the literature. Given that the Great Chagos Bank extends over approximately 12,500 km2and many other large deep submerged banks exist across the world’s oceans, our results suggest that deep-water seagrass may be far more abundant than previously suspected.

Concepts: Coral reef, Atlantic Ocean, Indian Ocean, Ocean, Chagos Archipelago, Leatherback turtle, Green turtle, Seagrass


Biofouled debris from the 2011 Great East Japan earthquake and tsunami has landed in the Northeast Pacific and along the Hawaiian Islands since 2012. As of 2017, >630 biofouled debris items with >320 living species of algae, invertebrates, and fish have been examined. The invasive mussel Mytilus galloprovincialis was present on >50% of those items. Size, reproduction, and growth of this filter-feeding species were examined to better understand long-distance rafting of a coastal species. The majority of mussels (79%) had developing or mature gametes, and growth rates averaged 0.075±0.018 SE mm/day. Structural and elemental (barium/calcium) analysis of mussel shells generated estimates of growth in coastal waters (mean=1.3 to 25mm total length), which provides an indication of residence times in waters along North America and the Hawaiian Islands prior to landing. Detailed studies of individual species contribute to our understanding of debris as a transport vector and aid efforts to evaluate potential risks associated with marine debris.

Concepts: Hawaii, United States, Japan, Pacific Ocean, Mussel, Mytilidae, Island, Zebra mussel


The durability of plastics in the marine environment has led to concerns regarding the pervasiveness of this debris in remote polar habitats. Microplastic (MP) enrichment in East Antarctic sea ice was measured in one ice core sampled from coastal land-fast sea ice. The core was processed and filtered material was analyzed using micro Fourier-Transform Infrared (μFTIR) spectroscopy. 96 MP particles were identified, averaging 11.71 particles L-1. The most common MP polymers (polyethylene, polypropylene, and polyamide) were consistent with those most frequently represented in the majority of marine MP studies. Sea-ice MP concentrations were positively related with chlorophyll a, suggesting living biomass could assist in incorporating MPs in sea ice. Our preliminary results indicate that sea ice has the potential to serve as a reservoir for MP debris in the Southern Ocean, which may have consequences for Southern Ocean food webs and biogeochemistry.


Marine debris, particularly plastic and abandoned, lost and discarded fishing gear, is ubiquitous in marine environments. This study provides the first quantitative and qualitative assessment of benthic debris using seafloor video collected from a drop camera system in the Bay of Fundy, Eastern Canada. An estimated 137 debris items km-2 of seafloor were counted, comprising of plastic (51%), fishing gear (including plastic categories; 28%) and other (cable, metal, tires; 21%). Debris was widespread, but mainly located nearshore (within 9 km) and on the periphery of areas with high fishing intensity. This baseline benthic marine debris characterization and estimate of abundance provides valuable information for government (municipal, provincial and federal) and for other stakeholders to implement management strategies to reduce plastic and other categories of benthic marine pollution at source. Strategies may include limiting plastic use and reducing illegal dumping through improved education among fishers.


Although there have been enormous reports on the microplastic pollution from different plastic products, impacts, controlling mechanisms in recent years, the surgical face masks, made up of polymeric materials, as a source of microplastic pollution potential in the ecosystem are not fully understood and considered yet. Current studies are mostly stated out that microplastics pollution should be a big deal because of their enormous effect on the aquatic biota, and the entire environment. Due to the complicated conditions of the aquatic bodies, microplastics could have multiple effects, and reports so far are still lacking. In addition to real microplastic pollutions which has been known before, face mask as a potential microplastic source could be also researching out, including the management system, in detail. It is noted that face masks are easily ingested by higher organisms, such as fishes, and microorganisms in the aquatic life which will affect the food chain and finally chronic health problems to humans. As a result, microplastic from the face mask should be a focus worldwide.


Microplastics are present in marine habitats worldwide and laboratory studies show this material can be ingested, yet data on abundance in natural populations is limited. This study documents microplastics in 10 species of fish from the English Channel. 504 Fish were examined and plastics found in the gastrointestinal tracts of 36.5%. All five pelagic species and all five demersal species had ingested plastic. Of the 184 fish that had ingested plastic the average number of pieces per fish was 1.90±0.10. A total of 351 pieces of plastic were identified using FT-IR Spectroscopy; polyamide (35.6%) and the semi-synthetic cellulosic material, rayon (57.8%) were most common. There was no significant difference between the abundance of plastic ingested by pelagic and demersal fish. Hence, microplastic ingestion appears to be common, in relatively small quantities, across a range of fish species irrespective of feeding habitat. Further work is needed to establish the potential consequences.

Concepts: Coprophagia, Digestive system, England, Cornwall, Pelagic fish


Anthropogenic noise is a significant pollutant of the world’s oceans, affecting behavioural and physiological traits in a range of species, including anti-predator behaviours. Using the open field test, we investigated the effects of recordings of piling and drilling noise on the anti-predator behaviour of captive juvenile European seabass in response to a visual stimulus (a predatory mimic). The impulsive nature of piling noise triggered a reflexive startle response, which contrasted the behaviour elicited by the continuous drilling noise. When presented with the predatory mimic, fish exposed to both piling and drilling noise explored the experimental arena more extensively than control fish exposed to ambient noise. Fish under drilling and piling conditions also exhibited reduced predator inspection behaviour. Piling and drilling noise induced stress as measured by ventilation rate. This study provides further evidence that the behaviour and physiology of European seabass is significantly affected by exposure to elevated noise levels.

Concepts: Psychology, Effect, Affect, Behavior, Human behavior, Evolutionary physiology, European seabass, Sea bass


Plastic marine pollution in the open ocean of the southern hemisphere is largely undocumented. Here, we report the result of a (4489km) 2424 nautical mile transect through the South Pacific subtropical gyre, carried out in March-April 2011. Neuston samples were collected at 48 sites, averaging 50 nautical miles apart, using a manta trawl lined with a 333μm mesh. The transect bisected a predicted accumulation zone associated with the convergence of surface currents, driven by local winds. The results show an increase in surface abundance of plastic pollution as we neared the center and decrease as we moved away, verifying the presence of a garbage patch. The average abundance and mass was 26,898particles km(-2) and 70.96gkm(-2), respectively. 88.8% of the plastic pollution was found in the middle third of the samples with the highest value of 396,342particles km(-2) occurring near the center of the predicted accumulation zone.

Concepts: Ocean gyre, Great Pacific Garbage Patch, Pacific Ocean, South America, Ocean, Equator, Mile, Nautical mile


Marine plastic pollution has been a growing concern for decades. Single-use plastics (plastic bags and microbeads) are a significant source of this pollution. Although research outlining environmental, social, and economic impacts of marine plastic pollution is growing, few studies have examined policy and legislative tools to reduce plastic pollution, particularly single-use plastics (plastic bags and microbeads). This paper reviews current international market-based strategies and policies to reduce plastic bags and microbeads. While policies to reduce microbeads began in 2014, interventions for plastic bags began much earlier in 1991. However, few studies have documented or measured the effectiveness of these reduction strategies. Recommendations to further reduce single-use plastic marine pollution include: (i) research to evaluate effectiveness of bans and levies to ensure policies are having positive impacts on marine environments; and (ii) education and outreach to reduce consumption of plastic bags and microbeads at source.

Concepts: Carbon, Pollution, Plastic, Policy, Marine pollution, Plastic recycling


Recent work suggesting that fisheries depletions have turned the corner is misplaced because analysis was based largely on fisheries from better-managed developed-world fisheries. Some indicators of status show improvements in the minority of fisheries subjected to formal assessment. Other indicators, such as trophic level and catch time series, have been controversial. Nevertheless, several deeper analyses of the status of the majority of world fisheries confirm the previous dismal picture: serious depletions are the norm world-wide, management quality is poor, catch per effort is still declining. The performance of stock assessment itself may stand challenged by random environmental shifts and by the need to accommodate ecosystem-level effects. The global picture for further fisheries species extinctions, the degradation of ecosystem food webs and seafood security is indeed alarming. Moreover, marine ecosystems and their embedded fisheries are challenged in parallel by climate change, acidification, metabolic disruptors and other pollutants. Attempts to remedy the situation need to be urgent, focused, innovative and global.

Concepts: Ecology, Climate, Ecosystem, Fisheries, Trophic level, Food chain, Apex predator, Fishing