Discover the most talked about and latest scientific content & concepts.

Journal: Marine biotechnology (New York, N.Y.)


The nematocyst is one of the most complex intracellular structures found in nature and is the defining feature of the phylum Cnidaria (sea anemones, corals, jellyfish, and hydroids). This miniature stinging organelle contains and delivers venom into prey and foe yet little is known about its toxic components. In the present study, we identified by tandem mass spectrometry 20 proteins released upon discharge from the nematocyst of the model sea anemone Nematostella vectensis. The availability of genomic and transcriptomic data for this species enabled accurate identification and phylogenetic study of these components. Fourteen of these proteins could not be identified in other animals suggesting that they might be the products of taxonomically restricted genes, a finding which fits well their origin from a taxon-specific organelle. Further, we studied by in situ hybridization the localization of two of the transcripts encoding the putative nematocyst venom proteins: a metallopeptidase related to the Tolloid family and a cysteine-rich protein. Both transcripts were detected in nematocytes, which are the cells containing nematocysts, and the metallopeptidase was found also in pharyngeal gland cells. Our findings reveal for the first time the possible venom components of a sea anemone nematocyst and suggest their evolutionary origins.

Concepts: Gene, Animal, Coral, Cnidaria, Jellyfish, Anthozoa, Sea anemone, Cnidocyte


Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine’s nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach.

Concepts: DNA, Cell nucleus, Gene expression, Bacteria, Molecular biology, Intestine, Cobitidae, Misgurnus


Tiger puffer Takifugu rubripes is one of the most valuable fish species in Japan; however, there has not been much progress in their selective breeding until recently despite their potential in aquaculture. Their long generation time and the large body size of their broodstock make breeding difficult. Recently, we made a surrogate broodstock, which produced gametes of different species in salmonids. Therefore, by using closely related recipients, which have small body sizes and short generation times, it is possible to accelerate breeding of the tiger puffer. Thus, we considered the grass puffer Takifugu niphobles, which has a short generation time and a small maturation size, as a potential recipient for gamete production of the tiger puffer. Furthermore, if sterile triploid individuals are used as recipients, the resulting surrogate broodstock would produce only donor-derived gametes. Therefore, we examined conditions for inducing triploidy by suppressing meiosis II to retain the second polar body in grass puffer. We found that cold shock treatment, which is 5°C for 30 min starting from 5 min after fertilization, is optimal to obtain high triploidization and hatching rates. Although the resulting triploid grass puffers produced small amounts of gametes in both sexes, the offspring derived from the gametes could not live for over 3 days. Furthermore, we found that triploid grass puffer showed normal plasma sex steroid levels compared with diploids. These are important characteristics of triploid grass puffer as surrogate recipients used for germ cell transplantation.

Concepts: Species, Sex, Reproductive system, Meiosis, Polyploidy, Gamete, Germ cells, Hybrid


Bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix) are genetically close aquaculture fish in the Cyprinidae, which have been confirmed to hold XX/XY sex determination. However, genomic locations of potential sex-related loci in these two fishes are still unknown. In this study, a high-resolution genetic linkage map was constructed by using 2976 SNP and 924 microsatellite markers in a F1 full-sib family of bighead carp, the length of which spanned 2022.34 cM with an average inter-marker distance of 0.52 cM. Comparative genomics revealed a high level of genomic synteny between bighead carp and zebrafish as well as grass carp. QTL fine mapping for sex trait was performed based on this linkage map of bighead carp and an unpublished linkage map of silver carp. A map distance of 3.863 cM (69.787-73.650 cM) on LG19 of bighead carp and 4.705 cM (79.096-83.801 cM) on LG21 of silver carp was significantly associated with sex phenotypes, and these two LGs are homologous between two fish species. Fourteen markers harboring in these regions were in strong linkage disequilibrium with the sex phenotype variance explained (PVE) varying from 89 to 100%. Two common markers were mapped on the QTL regions of bighead carp and silver carp, suggesting that these two carp species may have similar genetic bases for sex determination. Eleven potentially sex-related genes were identified within or near the sex QTL markers in two species. This study provided insights into elucidating mechanisms and evolution of sex determination in cyprinid fishes.


It is common to count the numbers of specified fish in the field after speciation of captured fish according to their morphology and to subject these counts to appropriate statistical analyses. In recent years, a non-invasive method to estimate the abundance of a particular fish species using environmental DNA (eDNA) has been developed. However, it is still difficult to determine accurate numbers of fish species using such method. We predict that the estimation of individuals of certain fish species in the field is more accurate and easier by using haplotypes of DNA in the fast evolutionary region. Therefore, we focused on the regulatory region (D-loop) in mitochondrial DNA, which is known to have a high genetic variation at the intraspecific level of the targeting eel. We investigated haplotype diversity in eel at first and then determined the number of D-loop haplotypes contained in their exfoliated cells in breeding water. Finally, we developed a novel analytical method, HaCeD-Seq, to estimate the number of individuals based on the abovementioned data.


High-pH tolerance and growth are important traits for the shrimp culture industry in areas with saline-alkali water. In the present study, an F1 full-sib family of Pacific white shrimp (Litopenaeus vannamei) was generated with a new “semidirectional cross” method, and double-digest restriction site-associated DNA sequencing (ddRAD-Seq) technology was applied to genotype the 2 parents and 148 progenies. A total of 3567 high-quality markers were constructed for the genetic linkage map, and the total map length was 4161.555 centimorgans (cM), showing 48 linkage groups (LGs) with an average interlocus length of 1.167 cM. With a constrained logarithm of odds (LOD) score ≥ 2.50, 12 high-pH tolerance and 2 growth (body weight) QTLs were located. L. vannamei genomic scaffolds were used to assist with the detection of 21 stress- and 5 growth-related scaffold genes. According to the high-pH transcriptome data of our previous study, 6 candidate high-pH response genes were discovered, and 5 of these 6 genes were consistently expressed with the high-pH transcriptome data, validating the locations of the high-pH tolerance trait-related QTLs in this study. This paper is the first report of fine-mapping high-pH tolerance and growth (body weight) trait QTLs in one L. vannamei genetic map. Our results will further benefit marker-assisted selection work and might be useful for promoting genomic research on the shrimp L. vannamei.


The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Under commercial conditions, fish are exposed to several stressors. To date, little is known about the mechanism involved in the stress response of red cusk-eel, and there is no information related to the regulation mediated by long noncoding RNAs (lncRNAs). The objective of this work was to identify for the first time the lncRNAs in the transcriptome of G. chilensis and to evaluate the differential expression levels of lncRNAs in the liver, head kidney, and skeletal muscle in response to handling stress. We used previously published transcriptome data to identify the lncRNAs by applying a series of filters based on annotation information in several databases to discard coding sequences. We identified a total of 14,614 putative lncRNAs in the transcriptome of red cusk-eel, providing a useful lncRNA reference resource to be used in future studies. We evaluated their differential expression in response to handling stress in the liver, head kidney, and skeletal muscle, identifying 112, 323, and 108 differentially expressed lncRNAs, respectively. The results suggest that handling stress in red cusk-eel generate an altered metabolic status in liver, altered immune response in head kidney, and skeletal muscle atrophy through an important coding and noncoding gene network. This is the first study that identifies lncRNAs in Genypterus genus and that evaluates the relation between handling stress and lncRNAs in teleost fish, thereby providing valuable information regarding noncoding responses to stress in Genypterus species.


Yellow drum (Nibea albiflora) is an important maricultural fish in China, and genetic improvement is necessary for this species. This research evaluated the application of genomic selection methods to predict the genetic values of seven economic traits for yellow drum. Using genome-wide single-nucleotide polymorphisms (SNPs), we estimated the genetic parameters for seven traits, including body length (BL), swimming bladder index (SBI), swimming bladder weight (SBW), body thickness (BT), body height (BH), body length/body height ratio (LHR), and gonad weight index (GWI). The heritability estimates ranged from 0.309 to 0.843. We evaluated the prediction performance of various statistical methods, and no one method provided the highest predictive ability for all traits. We then evaluated and compared the use of genome-wide association study (GWAS)-informative SNPs and random SNPs for prediction and found that GWAS-informative SNPs obviously increased. It only needed 5 and 100 informative SNPs for LHR and BT to achieve almost the same predictive abilities as using genome-wide SNPs, and for BL, SBI, SBW, BH, and GWI, about 1000 to 3000 informative SNPs were needed to achieve whole-genome level predictive abilities. It can be concluded from the test results that breeders can use fewer SNPs to save the breeding costs of genomic selection for some traits.


The large yellow croaker Larimichthys crocea is an economically important marine fish species endemic to China and East Asia. Ningde area of Fujian Province is a major L. crocea aquaculture and spawning center in China. L. crocea cultivated at the Zhoushan area appears to be popular but suffered high mortality in cold water during winter seasons. To reduce the mortality rate, we pretreated fish with cold shocks prior to shift to cold water. In this study, we show that cold-pretreated L. crocea 12 days after shift to cold water increase the viability by 5.77-fold compared to the unpretreated (live fish 75 versus 13, p value = 1.775e-06, n = 100). The highest loss of 31 out of 100 fish in the unpretreated group occurred in day 3 after temperature shift. To identify the pretreatment-induced transcriptional changes that may be attributed to cold-resistance and survival, we performed RNA-seq analysis of a total of 48 fish that were prior to and 48 h, 54 h, and 72 h after temperature shift in pretreated and unpretreated groups in sextuplicate. Transcriptomic profiling analysis indicates that pretreatment-induced transcriptional alterations of enzymes involved in FASI, β-oxidation, PUFA synthesis, oxidative phosphorylation, and molecular chaperones persisted after temperature shift, suggesting that these metabolic pathways may play a role in L. crocea cold-resistance and survival. Our study provides insights on how the pretreatment enhances the L. crocea growth fitness in cold water.


The gold and cream colors of cultured Akoya pearls, as well as natural yellow nacre of pearl oyster shells, are thought to arise from intrinsic yellow pigments. While the isolation of the yellow pigments has been attempted using a large amount of gold pearls, the substance concerned is still unknown. We report here on the purification and characterization of yellow pigments from the nacre of Akoya pearl oyster shells. Two yellow components, YC1 and YC2, were isolated from the HCl-methanol (HCl-MeOH) extract from nacreous organic matrices obtained by decalcification of the shells with ethylenediaminetetraacetic acid (EDTA). Energy-dispersive X-ray and infrared spectroscopy analyses suggested that YC1 and YC2 precipitated under basic conditions are composed of Fe-containing inorganic and polyamide-containing organic compounds, respectively. YC1 solubilized under acidic conditions exhibited positive reactions to KSCN and K4[Fe(CN)6] reagents, showing the same ultraviolet-visible absorption spectrum as those of Fe(III)-containing compounds. In addition, X-ray absorption fine structure analysis supported the compound in the form of Fe(III). The total amount of Fe was approximately 2.6 times higher in the yellow than white nacre, and most Fe was fractionated into the EDTA-decalcifying and HCl-MeOH extracts. These results suggest that Fe(III) coordinated to EDTA-soluble and insoluble matrix compounds are mainly associated with yellow color development not only in the Akoya pearl oyster shells but also in the cultured Akoya pearls.