SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Lab on a chip

66

Rapid point-of-care (POC) diagnostic devices are needed for field-forward screening of severe acute systemic febrile illnesses. Multiplexed rapid lateral flow diagnostics have the potential to distinguish among multiple pathogens, thereby facilitating diagnosis and improving patient care. Here, we present a platform for multiplexed pathogen detection using multi-colored silver nanoplates. This design requires no external excitation source and permits multiplexed analysis in a single channel, facilitating integration and manufacturing.

Concepts: Health care, Medical terms, Patient, Microbiology, Malaria, Diagnosis, Fever, Viral hemorrhagic fever

32

We demonstrate a personalized food allergen testing platform, termed iTube, running on a cellphone that images and automatically analyses colorimetric assays performed in test tubes toward sensitive and specific detection of allergens in food samples. This cost-effective and compact iTube attachment, weighing approximately 40 grams, is mechanically installed on the existing camera unit of a cellphone, where the test and control tubes are inserted from the side and are vertically illuminated by two separate light-emitting-diodes. The illumination light is absorbed by the allergen assay, which is activated within the tubes, causing an intensity change in the acquired images by the cellphone camera. These transmission images of the sample and control tubes are digitally processed within 1 s using a smart application running on the same cellphone for detection and quantification of allergen contamination in food products. We evaluated the performance of this cellphone-based iTube platform using different types of commercially available cookies, where the existence of peanuts was accurately quantified after a sample preparation and incubation time of ∼20 min per test. This automated and cost-effective personalized food allergen testing tool running on cellphones can also permit uploading of test results to secure servers to create personal and/or public spatio-temporal allergen maps, which can be useful for public health in various settings.

Concepts: Epidemiology, Asthma, Light, Ontology, Food allergy, Mobile phone, Software testing, Web browser

30

Stomatal function can be used effectively to monitor plant hydraulics, photosensitivity, and gas exchange. Current approaches to measure single stomatal aperture, such as mold casting or fluorometric techniques, do not allow real time or persistent monitoring of the stomatal function over timescales relevant for long term plant physiological processes, including vegetative growth and abiotic stress. Herein, we utilize a nanoparticle-based conducting ink that preserves stomatal function to print a highly stable, electrical conductometric sensor actuated by the stomata pore itself, repeatedly and reversibly for over 1 week. This stomatal electro-mechanical pore size sensor (SEMPSS) allows for real-time tracking of the latency of single stomatal opening and closing times in planta, which we show vary from 7.0 ± 0.5 to 25.0 ± 0.5 min for the former and from 53.0 ± 0.5 to 45.0 ± 0.5 min for the latter in Spathiphyllum wallisii. These values are shown to correlate with the soil water potential and the onset of the wilting response, in quantitative agreement with a dynamic mathematical model of stomatal function. A single stoma of Spathiphyllum wallisii is shown to distinguish between incident light intensities (up to 12 mW cm(-2)) with temporal latency slow as 7.0 ± 0.5 min. Over a seven day period, the latency in opening and closing times are stable throughout the plant diurnal cycle and increase gradually with the onset of drought. The monitoring of stomatal function over long term timescales at single stoma level will improve our understanding of plant physiological responses to environmental factors.

Concepts: Time, Photosynthesis, Physiology, Plant physiology, Stoma, Marchantiophyta, Spathiphyllum wallisii

29

Textile-enabled interfacial microfluidics, utilizing fibrous hydrophilic yarns (e.g., cotton) to guide biological reagent flows, has been extended to various biochemical analyses recently. The restricted capillary-driving mechanism, however, persists as a major challenge for continuous and facilitated biofluidic transport. In this paper, we have first introduced a novel interfacial microfluidic transport principle to drive three-dimensional liquid flows on a micropatterned superhydrophobic textile (MST) platform in a more autonomous and controllable manner. Specifically, the MST system utilizes the surface tension-induced Laplace pressure to facilitate the liquid motion along the hydrophilic yarn, in addition to the capillarity present in the fibrous structure. The fabrication of MST is simply accomplished by stitching hydrophilic cotton yarn into a superhydrophobic fabric substrate (contact angle 140 ± 3°), from which well-controlled wetting patterns are established for interfacial microfluidic operations. The geometric configurations of the stitched micropatterns, e.g., the lengths and diameters of the yarn and bundled arrangement, can all influence the transport process, which is investigated both experimentally and theoretically. Two operation modes, discrete and continuous transport, are also presented in detail. In addition, the gravitational effect as well as the droplet removal process have been also considered and quantitatively analysed during the transport process. As a demonstration, an MST design has been implemented on an artificial skin surface to collect and remove sweat in a highly efficient and facilitated means. The results have illustrated that the novel interfacial transport on the textile platform can be potentially extended to a variety of biofluidic collection and removal applications.

Concepts: Cotton, Liquid, Surface tension, Fiber, Textile, Yarn, Sewing, Weaving

29

In optogenetics, neurons are genetically modified to become sensitive to light and thus, they can be stimulated or inhibited by light of certain wavelengths. In this work, we describe the fabrication of a polymer-based shaft electrode as a tool for optogenetics. This device can conduct light as well as fluids to a target brain region and record electrical neural signals from the same part of the tissue simultaneously. It is intended to facilitate optogenetic in vivo experiments with those novel multimodal neural probes or polymer optrodes. We used microsystems technology to integrate an SU-8 based waveguide and fluidic channel into a polyimide-based electrode shaft to allow simultaneous optical stimulation, fluid delivery, and electrophysiological recording in awake behaving animals. In a first acute proof-of-concept experiment in genetically modified mice, our device recorded single unit activity that was modulated by laser light transmitted into the tissue via the integrated waveguide.

Concepts: Neuron, Light, Optical fiber, Stimulated emission, In vivo, Neuroscience, Human brain, Fluid

28

We report the first demonstration of a microfluidic platform that captures the full physiological range of mass transport in 3-D tissue culture. The basis of our method used long microfluidic channels connected to both sides of a central microtissue chamber at different downstream positions to control the mass transport distribution within the chamber. Precise control of the Péclet number (Pe), defined as the ratio of convective to diffusive transport, over nearly five orders of magnitude (0.0056 to 160) was achieved. The platform was used to systematically investigate the role of physiological mass transport on vasculogenesis. We demonstrate, for the first time, that vasculogenesis can be independently stimulated by interstitial flow (Pe > 10) or hypoxic conditions (Pe < 0.1), and not by the intermediate state (normal living tissue). This simple platform can be applied to physiological and biological studies of 3D living tissue followed by pathological disease studies, such as cancer research and drug screening.

Concepts: Cancer, Biology, Histology, Diffusion, Ratio, English-language films, Microfluidics, Train station

28

Microscale methods for cell-based assays typically rely on macroscopic reagent handling and fluidic loading protocols that are technically challenging and do not scale with the number of assays favorably. Here, we demonstrate a microfluidic platform technology called “Kit-On-A-Lid-Assay” (KOALA), that enables the creation of self-contained microfluidic cell-based assays, integrating all the steps required to perform cell-based assays. The KOALA platform allows the pre-packaging of reagents, cryopreservation of cell suspensions, thawing of cell suspensions, culture of cells, and operation of whole cell-based assays. The operation of the KOALA platform is user-friendly and consists of bringing together a lid containing the microchannels, and a base containing the pre-packaged reagents, thereby causing fluidic exchange in all the channels simultaneously. We demonstrate that the KOALA cell-based assays can be simply operated from start to finish without any external laboratory equipment.

Concepts: DNA, Microfluidics, Reagent, Reagents for organic chemistry, Usability, Koala, The Creation of Adam

28

Conventional droplet generation approaches in digital microfluidics show ~10% variation in droplet volumes and are restricted to creating only small volumes. In this work, we demonstrate a new approach for splitting sample volumes precisely by gradually ramping down voltage, in place of abruptly switching off electrodes. This allows us to eliminate hydrodynamic instabilities responsible for variations in droplet volume. A simple visual method was developed for measuring sample volumes created on-chip. Our results show that generating and measuring arbitrary sample volumes accurately, with < 1% variation, is possible in electrowetting devices. The approach can be easily extended to existing digital microfluidic systems, and can potentially improve performance of applications requiring precise sample metering, such as immunoassays or DNA amplification.

Concepts: DNA, Fluid dynamics, Biotechnology, Surface tension, Microfluidics, Electrowetting, Cytonix, Digital microfluidics

28

We present a microfluidic array that allows lab-on-a-chip-based studies on hundreds of giant vesicles through immobilization, engineering and release of the vesicles. Real-time observations of the vesicular response are reported. This trap-and-release system is also used to efficiently narrow the size distribution of the vesicle population. In addition, it can be applied to a wide range of deformable objects.

Concepts: Scientific method, Vesicle

27

By use of synchrotron X-ray fluorescence and Rutherford backscattering spectrometry, we show the SU-8 soft lithographic process contaminates PDMS. Residues of the antimony containing photoinitiator are transferred from the master mold to the surface of PDMS, uncontrollably intensifying the surface potential, leading to electroosmotic flow variability in PDMS microfluidic devices.

Concepts: Electron, Spectroscopy, Fluid dynamics, Microfluidics, Lithography, Mold, Auger electron spectroscopy, Electroosmotic flow