SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Journal of sports science & medicine

150

The aim of this study was to test the possibility of the ultra-short-term lnRMSSD (measured in 1-min post-1-min stabilization period) to detect training induced adaptations in futsal players. Twenty-four elite futsal players underwent HRV assessments pre- and post-three or four weeks preseason training. From the 10-min HRV recording period, lnRMSSD was analyzed in the following time segments: 1) from 0-5 min (i.e., stabilization period); 2) from 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min and; 3) from 5-10 min (i.e., criterion period). The lnRMSSD was almost certainly higher (100/00/00) using the magnitude-based inference in all periods at the post- moment. The correlation between changes in ultra-short-term lnRMSSD (i.e., 0-1 min; 1-2 min; 2-3 min; 3-4 min; 4-5 min) and lnRMSSDCriterion ranged between 0.45-0.75, with the highest value (p = 0.75; 90% CI: 0.55 - 0.85) found between ultra-short-term lnRMDSSD at 1-2 min and lnRMSSDCriterion. In conclusion, lnRMSSD determined in a short period of 1-min is sensitive to training induced changes in futsal players (based on the very large correlation to the criterion measure), and can be used to track cardiac autonomic adaptations. Key pointsThe ultra-short-term (1 min) natural log of the root-mean-square difference of successive normal RR intervals (lnRMSSD) is sensitive to training effects in futsal playersThe ultra-short-term lnRMSSD may simplify the assessment of the cardiac autonomic changes in the field compared to the traditional and lengthier (10 min duration) analysisCoaches are encouraged to implement the ultra-short-term heart rate variability in their routines to monitor team sports athletes.

Concepts: Time, Cardiology, Heart, Measurement, Assessment, Probability theory, The Criterion, Heart rate variability

147

Since physical inactivity especially prevails during winter months, we set out to identify outdoor alternatives to indoor cycling (IC) by comparing the metabolic and cardiorespiratory responses during alpine skiing (AS), cross-country skiing (XCS) and IC and analyse the effects of sex, age and fitness level in this comparison. Twenty one healthy subjects performed alpine skiing (AS), cross-country skiing (XCS), and IC. Oxygen uptake (VO2), total energy expenditure (EE), heart rate (HR), lactate, blood glucose and rate of perceived exertion (RPE) were determined during three 4-min stages of low, moderate and high intensity. During XCS and IC VO2max and EE were higher than during AS. At least 2½ hours of AS are necessary to reach the same EE as during one hour of XCS or IC. HR, VO2, lactate, and RPEarms were highest during XCS, whereas RPEwhole-body was similar and RPElegs lower than during AS and IC, respectively. Weight adjusted VO2 and EE were higher in men than in women while fitness level had no effect. Male, fit and young participants were able to increase their EE and VO2 values more pronounced. Both AS and XCS can be individually tailored to serve as alternatives to IC and may thus help to overcome the winter activity deficit. XCS was found to be the most effective activity for generating a high EE and VO2 while AS was the most demanding activity for the legs. Key pointsDuring cross-country skiing and indoor cycling VO2max and energy expenditure were higher than during alpine skiingApproximately 2½ hours of alpine skiing are necessary to reach the same energy expenditure of one hour of cross-country skiing or indoor cycling.Alpine skiing and cross-country skiing can be individually tailored to serve as sports alternatives in winter to activity deficit.By applying different skiing modes as parallel ski steering, carving long radii and short turn skiing, metabolic and cardiorespiratory response can be increased during alpine skiing.Male, fit and young participants were able to increase their energy expenditure and VO2 more pronounced with an increase in intensity compared with their counterparts.

Concepts: Energy, Cross-country skiing, Alpine skiing, Ski touring, Telemark skiing, VO2 max, Ski binding, Winter

143

This study examined the effectiveness of an applied mental skills training (MST) intervention utilizing mental skills to enhance intrinsic sources of enjoyment (ISOEs) as a means of promoting self-confidence, motivational style, and athletic performance, while also decreasing trait anxiety. The intervention project was designed to increase intrinsic SOE using a systematic and individualized mental training protocol, and then examine its relationships to mental skills and soccer performance. A Division 1 collegiate women’s soccer team was randomly assigned to treatment (n = 8) and control (n = 11) groups, equally distributed by academic year, position, and pre-season coach-evaluated starters and non-starts. Results revealed that the MST intervention significantly increased intrinsic enjoyment targeted psychological and competitive outcomes, both in practice and competition within the treatment group as compared to the control group. This study’s support for the impact mental skills training may have had on ISOEs, as well as other psychosocial outcomes and athletic performance can serve to highlight a mental skill often overlooked by consultants and coaches.

Concepts: Psychology, Skill, Training, Learning, Positive psychology, Neuroticism, Association football, La Liga

48

Running is associated with a higher risk of overuse injury than other forms of aerobic exercise such as walking, swimming and cycling. An accurate description of the proportion of running injuries per anatomical location and where possible, per specific pathology, for both genders is required. The aim of this review was to determine the proportion of lower limb running injuries by anatomical location and by specific pathology in male and female runners (≥800m - ≤ marathon). The preferred reporting items for systematic reviews and meta-analyses guidelines were followed for this review. A literature search was performed with no restriction on publication year in Web of Science, Scopus, Sport-Discus, PubMed, and CINAHL up to July 2017. Retrospective, cross-sectional, prospective and randomised-controlled studies which surveyed injury data in runners were included. 36 studies were included to report the overall proportion of injury per anatomical location. The overall proportion of injury by specific pathology was reported from 11 studies. The knee (28%), ankle-foot (26%) and shank (16%) accounted for the highest proportion of injury in male and female runners, although the proportion of knee injury was greater in women (40% vs. 31%). Relative to women, men had a greater proportion of ankle-foot (26% vs. 19%) and shank (21% vs. 16%) injuries. Patellofemoral pain syndrome (PFPS; 17%), Achilles tendinopathy (AT; 10%) and medial tibial stress syndrome (MTS; 8%) accounted for the highest proportion of specific pathologies recorded overall. There was insufficient data to sub-divide specific pathology between genders. The predominate injury in female runners is to the knee. Male runners have a more even distribution of injury between the knee, shank and ankle-foot complex. There are several methodological issues, which limit the interpretation of epidemiological data in running injury.

39

The effects of concurrent strength and endurance training have been well studied in untrained and moderately-trained individuals. However, studies examining these effects in individuals with a long history of resistance training (RT) are lacking. Additionally, few studies have examined how strength and power are affected when different types of endurance training are added to an RT protocol. The purpose of the present study was to compare the effects of concurrent training incorporating either low-volume, high-intensity interval training (HIIT, 8-24 Tabata intervals at ~150% of VO2max) or high-volume, medium-intensity continuous endurance training (CT, 40-80 min at 70% of VO2max), on the strength and power of highly-trained individuals. Sixteen highly-trained ice-hockey and rugby players were divided into two groups that underwent either CT (n = 8) or HIIT (n = 8) in parallel with RT (2-6 sets of heavy parallel squats, > 80% of 1RM) during a 6-week period (3 sessions/wk). Parallel squat performance improved after both RT + CT and RT + HIIT (12 ± 8% and 14 ± 10% respectively, p < 0.01), with no difference between the groups. However, aerobic power (VO2max) only improved after RT + HIIT (4 ± 3%, p < 0.01). We conclude that strength gains can be obtained after both RT + CT and RT + HIIT in athletes with a prior history of RT. This indicates that the volume and/or intensity of the endurance training does not influence the magnitude of strength improvements during short periods of concurrent training, at least for highly-trained individuals when the endurance training is performed after RT. However, since VO2max improved only after RT + HIIT and this is a time efficient protocol, we recommend this type of concurrent endurance training.

28

The purpose of the study was to examine the effects of altering from habitual mixed Western-based (HD) to a very low-carbohydrate high-fat (VLCHF) diet over a 4-week timecourse on performance and physiological responses during high-intensity interval training (HIIT). Eighteen moderately trained males (age 23.8 ± 2.1 years) consuming their HD (48 ± 13% carbohydrate, 17 ± 3% protein, 35 ± 9% fat) were assigned to 2 groups. One group was asked to remain on their HD, while the other was asked to switch to a non-standardized VLCHF diet (8 ± 3% carbohydrate, 29 ± 15% protein, 63 ± 13% fat) for 4 weeks. Participants performed graded exercise tests (GXT) before and after the experiment, and an HIIT session (5x3min, work/rest 2:1, passive recovery, total time 34min) before, and after 2 and 4 weeks. Heart rate (HR), oxygen uptake (V̇O2), respiratory exchange ratio (RER), maximal fat oxidation rates (Fatmax) and blood lactate were measured. Total time to exhaustion (TTE) and maximal V̇O2 (V̇O2max) in the GXT increased in both groups, but between-group changes were trivial (ES ± 90% CI: -0.1 ± 0.3) and small (0.57 ± 0.5), respectively. Between-group difference in Fatmax change (VLCHF: 0.8 ± 0.3 to 1.1 ± 0.2 g/min; HD: 0.7 ± 0.2 to 0.8 ± 0.2 g/min) was large (1.2±0.9), revealing greater increases in the VLCHF versus HD group. Between-group comparisons of mean changes in V̇O2 and HR during the HIIT sessions were trivial to small, whereas mean RER decreased more in the VLCHF group (-1.5 ± 0.1). Lactate changes between groups were unclear. Adoption of a VLCHF diet over 4 weeks increased Fatmax and did not adversely affect TTE during the GXT or cardiorespiratory responses to HIIT compared with the HD.

26

The purpose of this study was compare the effects of a traditional and an instability resistance circuit training program on upper and lower limb strength, power, movement velocity and jumping ability. Thirty-six healthy untrained men were assigned to two experimental groups and a control group. Subjects in the experimental groups performed a resistance circuit training program consisting of traditional exercises (TRT, n = 10) or exercises executed in conditions of instability (using BOSU® and TRX®) (IRT, n = 12). Both programs involved three days per week of training for a total of seven weeks. The following variables were determined before and after training: maximal strength (1RM), average (AV) and peak velocity (PV), average (AP) and peak power (PP), all during bench press (BP) and back squat (BS) exercises, along with squat jump (SJ) height and counter movement jump (CMJ) height. All variables were found to significantly improve (p <0.05) in response to both training programs. Major improvements were observed in SJ height (IRT = 22.1%, TRT = 20.1%), CMJ height (IRT = 17.7%, TRT = 15.2%), 1RM in BS (IRT = 13.03%, TRT = 12.6%), 1RM in BP (IRT = 4.7%, TRT = 4.4%), AP in BS (IRT = 10.5%, TRT = 9.3%), AP in BP (IRT = 2.4%, TRT = 8.1%), PP in BS (IRT=19.42%, TRT = 22.3%), PP in BP (IRT = 7.6%, TRT = 11.5%), AV in BS (IRT = 10.5%, TRT = 9.4%), and PV in BS (IRT = 8.6%, TRT = 4.5%). Despite such improvements no significant differences were detected in the posttraining variables recorded for the two experimental groups. These data indicate that a circuit training program using two instability training devices is as effective in untrained men as a program executed under stable conditions for improving strength (1RM), power, movement velocity and jumping ability. Key PointsSimilar adaptations in terms of gains in strength, power, movement velocity and jumping ability were produced in response to both training programs.Both the stability and instability approaches seem suitable for healthy, physically-active individuals with or with limited experience in resistance training.RPE emerged as a useful tool to monitor exercise intensity during instability strength training.

Concepts: Better, Physical exercise, Exercise, Strength training, Weight training, Trigraph, Resistance training, Isometric exercise

8

It has been proposed that high exercise loads increase the risk of infection, most frequently reported as upper respiratory tract infections, by suppressing the immune system. Most athletes will not train when experiencing sickness due to the fear of health complications. However, high training volumes are incompatible with high rates of non-training days, regardless of the cause. The purpose of this observational study was to examine the relationship between self-reported, exercise-constraining days of sickness (days when the athlete decided not to train due to symptoms of disease, either self-reported or by a physician) and the volumes of exercise training in elite endurance athletes by analyzing data from training logs kept for several years. The subjects included 11 elite endurance athletes (8 male, 3 female) competing at national and international levels in cross-country skiing, biathlon and long-distance running. Training logs available from these 11 subjects added to a total of 61 training years. The number of training hours per year (462, 79-856; median, range) was significantly and negatively correlated to the reported number of days not training due to sickness (15, 0-164) by a 3(rd) degree polynomial regression (R(2) = 0.48, F ratio = 18, p < 0.0001). We conclude that elite endurance athletes can achieve high training volumes only if they also experience few sick-days. Key pointsTop level performance demands high training volumes and intensities, which may compromise immune function.Elite athletes must have an immune system capable of intact function also when under sever physiological and psychological stress.Elite performance, especially in endurance sports, is therefore incompatible with a high rate of infections.A negative correlation between infections and exercise training load among elite athletes is consequently observed - the less sick you are the more you can train.

Concepts: Immune system, Infection, Respiratory system, Upper respiratory tract infection

3

A career as an elite-class male athlete seems to improve metabolic heath in later life and is also associated with longer life expectancy. Telomere length is a biomarker of biological cellular ageing and could thus predict morbidity and mortality. The main aim of this study was to assess the association between vigorous elite-class physical activity during young adulthood on later life leukocyte telomere length (LTL). The study participants consist of former male Finnish elite athletes (n = 392) and their age-matched controls (n = 207). Relative telomere length was determined from peripheral blood leukocytes by quantitative real-time polymerase chain reaction. Volume of leisure-time physical activity (LTPA) was self-reported and expressed in metabolic equivalent hours. No significant difference in mean age-adjusted LTL in late life (p = 0.845) was observed when comparing former male elite athletes and their age-matched controls. Current volume of LTPA had no marked influence on mean age-adjusted LTL (p for trend 0.788). LTL was inversely associated with age (p = 0.004).Our study findings suggest that a former elite athlete career is not associated with LTL later in life. Key pointsA career as an elite-class athlete is associated with improved metabolic health in late life and is associated with longer life expectancy.A career as an elite-class athlete during young adulthood was not associated with leukocyte telomere length in later life.Current volume of leisure-time physical activity did not influence telomere length in later life.

Concepts: DNA, Polymerase chain reaction, Blood, Senescence, Mortality rate, DNA replication, Life expectancy, DNA polymerase

2

To assess the impact of ‘top-up’ normoxic or hypoxic repeat-sprint training on sea-level repeat-sprint ability, thirty team sport athletes were randomly split into three groups, which were matched in running repeat-sprint ability (RSA), cycling RSA and 20 m shuttle run performance. Two groups then performed 15 maximal cycling repeat-sprint training sessions over 5 weeks, in either normoxia (NORM) or hypoxia (HYP), while a third group acted as a control (CON). In the post-training cycling RSA test, both NORM (13.6%; p = 0.0001, and 8.6%; p = 0.001) and HYP (10.3%; p = 0.007, and 4.7%; p = 0.046) significantly improved overall mean and peak power output, respectively, whereas CON did not change (1.4%; p = 0.528, and -1.1%; p = 0.571, respectively); with only NORM demonstrating a moderate effect for improved mean and peak power output compared to CON. Running RSA demonstrated no significant between group differences; however, the mean sprint times improved significantly from pre- to post-training for CON (1.1%), NORM (1.8%), and HYP (2.3%). Finally, there were no group differences in 20 m shuttle run performance. In conclusion, ‘top-up’ training improved performance in a task-specific activity (i.e. cycling); however, there was no additional benefit of conducting this ‘top-up’ training in hypoxia, since cycle RSA improved similarly in both HYP and NORM conditions. Regardless, the ‘top-up’ training had no significant impact on running RSA, therefore the use of cycle repeat-sprint training should be discouraged for team sport athletes due to limitations in specificity. Key points'Top-up' repeat-sprint training performed on a cycle ergometer enhances cycle repeat-sprint ability compared to team sport training only in football players.The addition of moderate hypoxia to repeat-sprint training provides no additional performance benefits to sea-level repeat-sprint ability or endurance performance than normoxic repeat-sprint training.‘Top-up’ cycling repeat-sprint training provides no significant additional benefit to running RSA or endurance performance than team sport training only, and therefore running based repeat-sprint interventions are recommended for team sport athletes.

Concepts: Arithmetic mean, Hypoxia, Performance, Peak power, Running, Cerebral hypoxia, Sprint