Discover the most talked about and latest scientific content & concepts.

Journal: Journal of solid state chemistry


CeB2O4F is the first cerium fluoride borate, which is exclusively built up of one-dimensional, infinite chains of condensed trigonal-planar [BO3](3-) groups. This new cerium fluoride borate was synthesized under high-pressure/high-temperature conditions of 0.9 GPa and 1450 °C in a Walker-type multianvil apparatus. The compound crystallizes in the orthorhombic space group Pbca (No. 61) with eight formula units and the lattice parameters a=821.63(5), b=1257.50(9), c=726.71(6) pm, V=750.84(9) Å(3), R 1=0.0698, and wR 2=0.0682 (all data). The structure exhibits a 9+1 coordinated cerium ion, one three-fold coordinated fluoride ion and a one-dimensional chain of [BO3](3-) groups. Furthermore, IR spectroscopy, Electron Micro Probe Analysis and temperature-dependent X-ray powder diffraction measurements were performed.

Concepts: Diffraction, Crystallography, Materials science, X-ray crystallography, Crystal system, Powder diffraction, Neutron diffraction, Crystallographic database


A series of Fe(3+)-bearing Li7La3Zr2O12 (LLZO) garnets was synthesized using solid-state synthesis methods. The synthetic products were characterized compositionally using electron microprobe analysis and inductively coupled plasma optical emission spectroscopy (ICP-OES) and structurally using X-ray powder diffraction and (57)Fe Mössbauer spectroscopy. A maximum of about 0.25 Fe(3+) pfu could be incorporated in Li7-3x Fe x La3Zr2O12 garnet solid solutions. At Fe(3+) concentrations lower than about 0.16 pfu, both tetragonal and cubic garnets were obtained in the synthesis experiments. X-ray powder diffraction analysis showed only a garnet phase for syntheses with starting materials having intended Fe(3+) contents lower than 0.52 Fe(3+) pfu. Back-scattered electron images made with an electron microprobe also showed no phase other than garnet for these compositions. The lattice parameter, a 0, for all solid-solution garnets is similar with a value of a 0≈12.98 Å regardless of the amount of Fe(3+). (57)Fe Mössbauer spectroscopic measurements indicate the presence of poorly- or nano-crystalline FeLaO3 in syntheses with Fe(3+) contents greater than 0.16 Fe(3+) pfu. The composition of different phase pure Li7-3x Fe x La3Zr2O12 garnets, as determined by electron microprobe (Fe, La, Zr) and ICP-OES (Li) measurements, give Li6.89Fe0.03La3.05Zr2.01O12, Li6.66Fe0.06La3.06Zr2.01O12, Li6.54Fe0.12La3.01Zr1.98O12, and Li6.19Fe0.19La3.02Zr2.04O12. The (57)Fe Mössbauer spectrum of cubic Li6.54Fe0.12La3.01Zr1.98O12 garnet indicates that most Fe(3+) occurs at the special crystallographic 24d position, which is the standard tetrahedrally coordinated site in garnet. Fe(3+) in smaller amounts occurs at a general 96h site, which is only present for certain Li-oxide garnets, and in Li6.54Fe0.12La3.01Zr1.98O12 this Fe(3+) has a distorted 4-fold coordination.

Concepts: Spectroscopy, Diffraction, Crystallography, Chemical synthesis, X-ray crystallography, Powder diffraction, Neutron diffraction, Electron microprobe


Progressive chemical .delithiation of commercially available lithium cobalt oxide ([Formula: see text]) showed consecutive changes in the crystal properties. Rietveld refinement of high resolution X-ray and neutron diffraction revealed an increased lattice parameter c and a reduced lattice parameter a for chemically delithiated samples. Using electron microscopy we have also followed the changes in the texture of the samples towards what we have found is a critical layer stoichiometry of about [Formula: see text] with x=1/3 that causes the grains to exfoliate. The pattern of etches by delithiation suggests that unrelieved strain fields may produce chemical activity.

Concepts: Electron, Diffraction, Crystallography, Proton, Nitrogen, Chemical element, Powder diffraction, Neutron diffraction


The stannides CuLi2Sn (CSD-427095) and Cu2LiSn (CSD-427096) were synthesized by induction melting of the pure elements and annealing at 400 °C. The phases were reinvestigated by X-ray powder and single-crystal X-ray diffractometry. Within both crystal structures the ordered CuSn and Cu2Sn lattices form channels which host Cu and Li atoms at partly mixed occupied positions exhibiting extensive vacancies. For CuLi2Sn, the space group F-43m. was verified (structure type CuHg2Ti; a=6.295(2) Å; wR 2(F²)=0.0355 for 78 unique reflections). The 4© and 4(d) positions are occupied by Cu atoms and Cu+Li atoms, respectively. For Cu2LiSn, the space group P63/mmc was confirmed (structure type InPt2Gd; a=4.3022(15) Å, c=7.618(3) Å; wR 2(F²)=0.060 for 199 unique reflections). The Cu and Li atoms exhibit extensive disorder; they are distributed over the partly occupied positions 2(a), 2(b) and 4(e). Both phases seem to be interesting in terms of application of Cu-Sn alloys as anode materials for Li-ion batteries.

Concepts: Crystallography, Structure, Chemical element, Silicon, Solid, Materials science, Lithium-ion battery, Seed crystal