Discover the most talked about and latest scientific content & concepts.

Journal: Journal of magnetic resonance (San Diego, Calif. : 1997)


The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio γ such as (13)C and (15)N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest (13)C nuclear polarization (approximately 6% for [1-(13)C]ethyl acetate) at 3.35T and 1.4K was found to be around 40mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of (13)C and (15)N compounds with long spin-lattice relaxation time T(1). In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.

Concepts: Spin, Acetone, Ethanol, Nuclear magnetic resonance, Magnetic moment, Solvent, Electron paramagnetic resonance, Chloroform


Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world’s energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

Concepts: Spin, Petroleum, Nuclear magnetic resonance, Magnetic resonance imaging, Relaxometry, Shale, Oil shale, Kerogen


We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated “on-the-fly” re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g.(7)Li and (31)P at 117 and 122MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic (7)Li and (31)P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) paramagnetic (17)O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+δ; (3) broadband (93)Nb static NMR of the Li-ion battery material BNb2O5; and (4) broadband static (127)I NMR of a potential Li-air battery product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems.

Concepts: Spin, Nuclear magnetic resonance, Magnetic resonance imaging, Solid-state nuclear magnetic resonance, Battery, Capacitor, Magic angle spinning, Magic angle


In this work, we experimentally demonstrate an increase in the local transmit efficiency of a 1.5 T MRI scanner by using a metasurface formed by an array of brass wires embedded in a high permittivity low loss medium. Placement of such a structure inside the scanner results in strong coupling of the radiofrequency field produced by the body coil with the lowest frequency electromagnetic eigenmode of the metasurface. This leads to spatial redistribution of the near fields with enhancement of the local magnetic field and an increase in the transmit efficiency per square root maximum specific absorption rate in the region-of-interest. We have investigated this structure in vivo and achieved a factor of 3.3 enhancement in the local radiofrequency transmit efficiency.

Concepts: Electromagnetism, Magnetic field, Fundamental physics concepts, Spin, Electric field, Specific absorption rate, Complex number, Ring


Magic-angle spinning (MAS) NMR is a powerful tool for studying molecular structure and dynamics, but suffers from its low sensitivity. Here, we developed a novel helium-cooling MAS NMR probe system adopting a closed-loop gas recirculation mechanism. In addition to the sensitivity gain due to low temperature, the present system has enabled highly stable MAS (vR=4-12kHz) at cryogenic temperatures (T=35-120K) for over a week without consuming helium at a cost for electricity of 16kW/h. High-resolution 1D and 2D data were recorded for a crystalline tri-peptide sample at T=40K and B0=16.4T, where an order of magnitude of sensitivity gain was demonstrated versus room temperature measurement. The low-cost and long-term stable MAS strongly promotes broader application of the brute-force sensitivity-enhanced multi-dimensional MAS NMR, as well as dynamic nuclear polarization (DNP)-enhanced NMR in a temperature range lower than 100K.

Concepts: Oxygen, Fundamental physics concepts, Nuclear magnetic resonance, Temperature, Thermodynamics, Cold, Cryogenics, Absolute zero


DNP methods can provide significant sensitivity enhancements in magic angle spinning solid-state NMR, but in systems with long polarization build up times long recycling periods are required to optimize sensitivity. We show how the sensitivity of such experiments can be improved by the classic flip-back method to recover bulk proton magnetization following continuous wave proton heteronuclear decoupling. Experiments were performed on formulations with characteristic build-up times spanning two orders of magnitude: a bulk BDPA radical doped o-terphenyl glass and microcrystalline samples of theophylline, l-histidine monohydrochloride monohydrate, and salicylic acid impregnated by incipient wetness. For these systems, addition of flip-back is simple, improves the sensitivity beyond that provided by modern heteronuclear decoupling methods such as SPINAL-64, and provides optimal sensitivity at shorter recycle delays. We show how to acquire DNP enhanced 2D refocused CP-INADEQUATE spectra with flip-back recovery, and demonstrate that the flip-back recovery method is particularly useful in rapid recycling regimes. We also report Overhauser effect DNP enhancements of over 70 at 592.6 GHz/900 MHz.

Concepts: Magnetic field, Maxwell's equations, Proton, Chemistry, Nuclear magnetic resonance, Scientific techniques, Magic angle spinning, Magic angle


Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that (15)N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of (15)N-based spin density operator elements of (15)NH4(+) spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the (15)NH4(+) spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the (15)NH4(+) ion as well as report on chemical exchange events of the (15)NH4(+) ion. Applications to (15)NH4(+) in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of (15)NH4(+) bound to a 41kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for (15)N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems.

Concepts: Electron, Quantum mechanics, Molecule, Measurement, Chemistry, Nuclear magnetic resonance, Ion, Ion Television


We show how DNP enhanced solid-state NMR spectra can be dramatically simplified by suppression of solvent signals. This is achieved by (i) exploiting the paramagnetic relaxation enhancement of solvent signals relative to materials substrates, or (ii) by using short cross-polarization contact times to transfer hyperpolarization to only directly bonded carbon-13 nuclei in frozen solutions. The methods are evaluated for organic microcrystals, surfaces and frozen solutions. We show how this allows for the acquisition of high-resolution DNP enhanced proton-proton correlation experiments to measure inter-nuclear proximities in an organic solid.

Concepts: Chemistry, Nuclear magnetic resonance, NMR spectroscopy, Magnetic resonance imaging, Solid-state nuclear magnetic resonance, Scientific techniques, Protein nuclear magnetic resonance spectroscopy, Carbon-13


Molecular dynamics (MD) simulations are used to investigate (1)H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk n-C5H12 to n-C17H36 hydrocarbons and bulk water. The MD simulations of the (1)H NMR relaxation times T1,2 in the fast motion regime where T1=T2 agree with measured (de-oxygenated) T2 data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion DT coefficients calculated using simulation configurations agree with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.

Concepts: Molecular dynamics, Molecule, Nuclear magnetic resonance, Magnetic resonance imaging, Computational chemistry, Computer simulation, Relaxation, Relaxometry


Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. (1)H NMR of water shows sensitivity and resolution obtained with the cells, and (63)Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. (115)In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry.

Concepts: Chemistry, Pressure, Atmospheric pressure, Atmosphere, Pascal, Superconductivity, Torr, Bar