Discover the most talked about and latest scientific content & concepts.

Journal: Journal of magnetic resonance (San Diego, Calif. : 1997)


The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio γ such as (13)C and (15)N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest (13)C nuclear polarization (approximately 6% for [1-(13)C]ethyl acetate) at 3.35T and 1.4K was found to be around 40mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of (13)C and (15)N compounds with long spin-lattice relaxation time T(1). In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.

Concepts: Spin, Acetone, Ethanol, Nuclear magnetic resonance, Magnetic moment, Solvent, Electron paramagnetic resonance, Chloroform


We have developed and explored an external automatic tuning/matching (eATM) robot that can be attached to commercial and/or home-built magic angle spinning (MAS) or static nuclear magnetic resonance (NMR) probeheads. Complete synchronization and automation with Bruker and Tecmag spectrometers is ensured via transistor-transistor-logic (TTL) signals. The eATM robot enables an automated “on-the-fly” re-calibration of the radio frequency (rf) carrier frequency, which is beneficial whenever tuning/matching of the resonance circuit is required, e.g. variable temperature (VT) NMR, spin-echo mapping (variable offset cumulative spectroscopy, VOCS) and/or in situ NMR experiments of batteries. This allows a significant increase in efficiency for NMR experiments outside regular working hours (e.g. overnight) and, furthermore, enables measurements of quadrupolar nuclei which would not be possible in reasonable timeframes due to excessively large spectral widths. Additionally, different tuning/matching capacitor (and/or coil) settings for desired frequencies (e.g.(7)Li and (31)P at 117 and 122MHz, respectively, at 7.05 T) can be saved and made directly accessible before automatic tuning/matching, thus enabling automated measurements of multiple nuclei for one sample with no manual adjustment required by the user. We have applied this new eATM approach in static and MAS spin-echo mapping NMR experiments in different magnetic fields on four energy storage materials, namely: (1) paramagnetic (7)Li and (31)P MAS NMR (without manual recalibration) of the Li-ion battery cathode material LiFePO4; (2) paramagnetic (17)O VT-NMR of the solid oxide fuel cell cathode material La2NiO4+δ; (3) broadband (93)Nb static NMR of the Li-ion battery material BNb2O5; and (4) broadband static (127)I NMR of a potential Li-air battery product LiIO3. In each case, insight into local atomic structure and dynamics arises primarily from the highly broadened (1-25MHz) NMR lineshapes that the eATM robot is uniquely suited to collect. These new developments in automation of NMR experiments are likely to advance the application of in and ex situ NMR investigations to an ever-increasing range of energy storage materials and systems.

Concepts: Spin, Nuclear magnetic resonance, Magnetic resonance imaging, Solid-state nuclear magnetic resonance, Battery, Capacitor, Magic angle spinning, Magic angle


Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that (15)N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of (15)N-based spin density operator elements of (15)NH4(+) spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the (15)NH4(+) spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the (15)NH4(+) ion as well as report on chemical exchange events of the (15)NH4(+) ion. Applications to (15)NH4(+) in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of (15)NH4(+) bound to a 41kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for (15)N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems.

Concepts: Electron, Quantum mechanics, Molecule, Measurement, Chemistry, Nuclear magnetic resonance, Ion, Ion Television


We show how DNP enhanced solid-state NMR spectra can be dramatically simplified by suppression of solvent signals. This is achieved by (i) exploiting the paramagnetic relaxation enhancement of solvent signals relative to materials substrates, or (ii) by using short cross-polarization contact times to transfer hyperpolarization to only directly bonded carbon-13 nuclei in frozen solutions. The methods are evaluated for organic microcrystals, surfaces and frozen solutions. We show how this allows for the acquisition of high-resolution DNP enhanced proton-proton correlation experiments to measure inter-nuclear proximities in an organic solid.

Concepts: Chemistry, Nuclear magnetic resonance, NMR spectroscopy, Magnetic resonance imaging, Solid-state nuclear magnetic resonance, Scientific techniques, Protein nuclear magnetic resonance spectroscopy, Carbon-13


Molecular dynamics (MD) simulations are used to investigate (1)H nuclear magnetic resonance (NMR) relaxation and diffusion of bulk n-C5H12 to n-C17H36 hydrocarbons and bulk water. The MD simulations of the (1)H NMR relaxation times T1,2 in the fast motion regime where T1=T2 agree with measured (de-oxygenated) T2 data at ambient conditions, without any adjustable parameters in the interpretation of the simulation data. Likewise, the translational diffusion DT coefficients calculated using simulation configurations agree with measured diffusion data at ambient conditions. The agreement between the predicted and experimentally measured NMR relaxation times and diffusion coefficient also validate the forcefields used in the simulation. The molecular simulations naturally separate intramolecular from intermolecular dipole-dipole interactions helping bring new insight into the two NMR relaxation mechanisms as a function of molecular chain-length (i.e. carbon number). Comparison of the MD simulation results of the two relaxation mechanisms with traditional hard-sphere models used in interpreting NMR data reveals important limitations in the latter. With increasing chain length, there is substantial deviation in the molecular size inferred on the basis of the radius of gyration from simulation and the fitted hard-sphere radii required to rationalize the relaxation times. This deviation is characteristic of the local nature of the NMR measurement, one that is well-captured by molecular simulations.

Concepts: Molecular dynamics, Molecule, Nuclear magnetic resonance, Magnetic resonance imaging, Computational chemistry, Computer simulation, Relaxation, Relaxometry


Pressure-induced changes in the chemical or electronic structure of solids require pressures well into the Giga-Pascal (GPa) range due to the strong bonding. Anvil cell designs can reach such pressures, but their small and mostly inaccessible sample chamber has severely hampered NMR experiments in the past. With a new cell design that has a radio frequency (RF) micro-coil in the high pressure chamber, NMR experiments beyond 20 Giga-Pascal are reported for the first time. (1)H NMR of water shows sensitivity and resolution obtained with the cells, and (63)Cu NMR on a cuprate superconductor (YBa2Cu3O7-δ) demonstrates that single-crystals can be investigated, as well. (115)In NMR of the ternary chalcogenide AgInTe2 discovers an insulator-metal transition with shift and relaxation measurements. The pressure cells can be mounted easily on standard NMR probes that fit commercial wide-bore magnets with regular cryostats for field- and temperature-dependent measurements ready for many applications in physics and chemistry.

Concepts: Chemistry, Pressure, Atmospheric pressure, Atmosphere, Pascal, Superconductivity, Torr, Bar


We have successfully developed a 1020MHz (24.0T) NMR magnet, establishing the world’s highest magnetic field in high resolution NMR superconducting magnets. The magnet is a series connection of LTS (low-Tc superconductors NbTi and Nb3Sn) outer coils and an HTS (high-Tc superconductor, Bi-2223) innermost coil, being operated at superfluid liquid helium temperature such as around 1.8K and in a driven-mode by an external DC power supply. The drift of the magnetic field was initially ±0.8ppm/10h without the (2)H lock operation; it was then stabilized to be less than 1ppb/10h by using an NMR internal lock operation. The full-width at half maximum of a (1)H spectrum taken for 1% CHCl3 in acetone-d6 was as low as 0.7Hz (0.7ppb), which was sufficient for solution NMR. On the contrary, the temporal field stability under the external lock operation for solid-state NMR was 170ppb/10h, sufficient for NMR measurements for quadrupolar nuclei such as (17)O; a (17)O NMR measurement for labeled tri-peptide clearly demonstrated the effect of high magnetic field on solid-state NMR spectra.

Concepts: Electron, Magnetic field, Fundamental physics concepts, Magnet, Solid-state nuclear magnetic resonance, Superconductivity, Superconducting magnet, Electromagnet


A novel slice-selective T1-T2 measurement is proposed to measure spatially resolved T1-T2 distributions. An adiabatic inversion pulse is employed for slice-selection. The slice-selective pulse is able to select a quasi-rectangular slice, on the order of 1 mm, at an arbitrary position within the sample.The method does not employ conventional selective excitation in which selective excitation is often accomplished by rotation of the longitudinal magnetization in the slice of interest into the transverse plane, but rather a subtraction based on CPMG data acquired with and without adiabatic inversion slice selection. T1 weighting is introduced during recovery from the inversion associated with slice selection. The local T1-T2 distributions measured are of similar quality to bulk T1-T2 measurements. The new method can be employed to characterize oil-water mixtures and other fluids in porous media. The method is beneficial when a coarse spatial distribution of the components is of interest.

Concepts: Measurement, Systems of measurement, Selection


Motivated by the persisting need for enhanced resolution in solution state NMR spectra, pure shift techniques such as Zangger-Sterk decoupling have recently attracted widespread interest. These techniques for homonuclear decoupling offer enhanced resolution in one- and multidimensional proton detected experiments by simplifying multiplet structures. In this work, a modification to the popular Zangger-Sterk technique PEPSIE (Perfect Echo Pure Shift Improved Experiment) is presented, which decouples pairs of spins even if they share the same volume element. This in turn can drastically improve the sensitivity, as compared to classical Zangger-Sterk decoupling, as larger volume elements can be used to collect the detected signal. Most interestingly, even in the presence of moderate strong coupling, the PEPSIE experiment produces clean and widely artifact free spectra. In order to better understand this - to us initially - surprising behaviour we performed analyses using numerical simulations and derived an (approximate) analytical solution from density matrix formalism. We show that this experiment is particularly suitable to study samples with strong signal clustering, a situation which can render classic Zangger-Sterk decoupling inefficient.

Concepts: Better, Improve, Proton, Sensitivity and specificity, Chemistry, Nuclear magnetic resonance, Chemical element, Decoupling


Pulsed-field gradients are common in modern liquid state NMR pulse sequences. They are often used instead of phase cycles for the selection of coherence pathways, thereby decreasing the time required for the NMR experiment. Soft off-resonance pulses with a B1 gradient result in a spatial encoding similar to that created by pulsed-field (B0) gradients. In this manuscript we show that pulse sequences with pulsed-field gradients can easily be converted to one which uses off-resonance B1 field gradient (OFFBEAT) pulses. The advantage of B1 gradient pulses for coherence selection is that the chemical shift evolution during the pulses is (partially) suppressed. Therefore no refocusing echos are required to correct for evolution during the gradient pulses. A tapered stripline is shown to be a convenient tool for creating a well-defined gradient in the B1 field strength. B1 gradient coherence selection using a tapered stripline is a simple and cheap alternative to B0 pulsed-field gradients.

Concepts: Gradient, Nuclear magnetic resonance, NMR spectroscopy, Chemical shift, Pulse, Liquid, Liquid crystal, The Advantage