SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Journal of fluorescence

27

The first fluorescent sensor for HF2 (-) anion, N(1), N(3)-di(naphthalene-1-yl)isophthalamide (L) has been derived from α-Napthylamine and isopthaloyl chloride. In 1:1 (v/v) DMSO:H2O, L exhibits high selectivity towards HF2 (-) anion with a 4-fold enhancement in fluorescent intensity. Very little enhancement in fluorescence intensity is observed for F(-), Cl(-), Br(-), I(-), SCN(-), PO4 (3-), SO4 (2-), and CH3COO(-) anions. The stoichiometry interaction between L and HF2 (-) is found to be 1:1 from fluorescence and UV/Visible spectral data. DFT calculation shows that binding between HF2 (-) and L is 1:1 and increases the relative planarity between the two naphthyl rings causing fluorescence enhancement. A shift of 0.080 V in oxidation potential of L is observed on interaction with HF2 (-) by cyclic voltammetry and square wave voltammetry.

Concepts: Electron, Light, Hydrogen, Fluorescence spectroscopy, Electrochemistry, Atom, Ion, Squarewave voltammetry

27

As the hardware of FLIM technique becomes mature, the most important criterion for FLIM application is the correct interpretation of its data. In this research, first of all, a more orthogonal phasor approach, called as Modified Phasor Approach (MPA), is put forward. It is a way to calculate the lifetime of the complex fluorescent process, and a rule to measure how much the fluorescence process deviates from single exponential decay. Secondly, MPA is used to analysis the time-resolved fluorescence processes of the transfected CHO-K1 Cell lines expressing adenosine receptor A1R tagged by CYP and YFP, measured in the channel of the acceptor. The image of the fluorescence lifetime and the multiplication of the fluorescence lifetime and deviation from single exponential decay reveal the details of the Homo-FRET. In one word, MPA provides the physical meaning in its whole modified phasor space, and broadens the way for the application of the fluorescence lifetime imaging.

Concepts: Fluorescence, Measurement, Radioactive decay, Computer program, Real number, Exponential function, English Channel, Ruler

27

Fluorescent PET (Photoinduced Electron Transfer) has been of particular growth in recent times. A novel PET based fluorescent sensor using unmodified CdSe quantum dots (QDs) has been developed for the trace determination of Nimesulide (NIM). The sensor is based on the selective fluorescence quenching of quantum dots by NIM in presence of other NSAIDs and is found that intensity of quenching is linearly related to NIM concentration in the range 8.2 × 10(-7) - 4.01 × 10(-5) M. The mechanism of interaction is discussed. Finally, the potential application of the proposed method for the trace determination of NIM in pharmaceutical formulation is demonstrated.

Concepts: Fluorescence, Electron, Spectroscopy, Pharmacology, Ultraviolet, Light, Non-steroidal anti-inflammatory drug, Quenching

25

Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg(2+) through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg(2+) in a wide pH range. Hg(2+) induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg(2+).

Concepts: Fluorescence, Spectroscopy, Light, Fluorescence spectroscopy, Chemistry, Solutions, Förster resonance energy transfer, Stokes shift

24

Competitive dye displacement titration has previously been used to characterize chitosan-DNA interactions using ethidium bromide. In this work, we aim to develop a fast and reliable method using SYBR Gold as a fluorescent probe to evaluate the binding affinity between ssRNA and chitosan. The interaction of chitosan with ssRNA was investigated as a function of temperature, molecular weight and degree of acetylation of chitosan, using competitive dye displacement titrations with fluorescence quenching. Affinity constants are reported, showing the high sensitivity of the interaction to the degree of acetylation of chitosan and barely dependent on the molecular weight. We propose that the mechanism of SYBR Gold fluorescence quenching is governed by both static and dynamic quenching.

Concepts: DNA, Fluorescence, Electron, Molecular biology, Ethidium bromide, Atomic mass unit, Agarose gel electrophoresis, Quenching

0

Furopyridine III, namely 1-(3-amino-4-(4-(tert-butyl)phenyl)-6-(p-tolyl)furo[2,3-b]pyridin-2-yl)ethan-1-one, synthesized from 4-(4-(tert-butyl)phenyl)-2-oxo-6-(p-tolyl)-1,2-dihydropyridine-3-carbonitrile I in two steps. The title compound is characterized by NMR, MS and its X-ray structure. The molecular structure consists of planar furopyridine ring with both phenyl rings being inclined from the furopyridine scaffold to a significant different extent. There are three intramolecular hydrogen bonds within the structure. The lattice is stabilized by N-H…O, H2C-H …π and π…π intermolecular interactions leading to three-dimensional network. Compound III exhibits fluorescent properties, which are investigated. Antimicrobial potential and antioxidant activity screening studies for the title compound III and the heterocyclic derivatives, I and II, show no activity towards neither bacterial nor fungal strains, while they exhibited weak to moderate antioxidant activity compared to reference.

Concepts: DNA, Oxygen, Molecular biology, Crystallography, Molecule, Intermolecular forces, Hydrogen bond, X-ray crystallography

0

The Quantitative Structure - Property Relationship (QSPR) approach was performed to study the fluorescence absorption wavelengths and emission wavelengths of 413 fluorescent dyes in different solvent conditions. The dyes included the chromophore derivatives of cyanine, xanthene, coumarin, pyrene, naphthalene, anthracene and etc., with the wavelength ranging from 250 nm to 800 nm. An ensemble method, random forest (RF), was employed to construct nonlinear prediction models compared with the results of linear partial least squares and nonlinear support vector machine regression models. Quantum chemical descriptors derived from density functional theory method and solvent information were also used by constructing models. The best prediction results were obtained from RF model, with the squared correlation coefficients [Formula: see text] of 0.940 and 0.905 for λabs and λem, respectively. The descriptors used in the models were discussed in detail in this report by comparing the feature importance of RF.

Concepts: Scientific method, Regression analysis, Quantum mechanics, Light, Computational chemistry, Density functional theory, Quantum chemistry, Electronic density

0

In this paper, we report on the results of spectrofluorimetric study of new fluorescent sensor based on [Zn2L2] doped in ethyl cellulose. The sensor optical signal is based on the rapid fluorescence quenching in the presence of acetone vapor. The acetone vapor detection limit in a gas mixture by means of sensor based on [Zn2L2] doped in ethyl cellulose is 1.68 ppb. Being highly sensitive to the acetone acetone presence, instant in response and easy to use, the sensor can find an application for the noninvasive diagnostics of diabetes as well as for the monitoring of the content of acetone acetone in the air at industrial and laboratory facilities. Graphical Abstract.

Concepts: Fluorescence, Spectroscopy, Acetone, Ethanol, Signal processing, Sensor, Image sensor, Quenching

0

C-phycoerythrin (CPE) was investigated as a colorimetric and fluorometric quantitative sensor for Cu2+ ions in an aqueous medium. UV - visible studies with 50 μM concentration of different metals were carried out with only Cu and Ag showing changes in the absorption spectra. Fluorescence emission studies showed similar results. UV - visible titration of CPE with different [Cu] resulted in a linear relationship within 10 μM Cu and a ‘naked eye’ visible difference in colour, most likely due to the formation of a CPE - Cu complex. Fluorescence emission of CPE was quenched rapidly within 5 min of mixing. Fluorescence emission titration studies revealed gradually decreasing CPE emission with increasing [Cu] with a Stern - Volmer constant of 2.5 × 104 M-1 and a detection limit of 5 μM.. CPE was selective for Cu even in the presence of different metals which were 5 times the concentration of Cu; it was also effective in aqueous samples spiked with Cu. FTIR studies showed considerable changes in the amide III, indicating side chain interactions, even as the protein backbone remained largely unaffected.

Concepts: Protein, Fluorescence, Spectroscopy, Oxygen, Function, Hydrogen, Measurement, Difference

0

So far, very few numbers of chemosensors for Cr3+ ion have been reported. However, the main drawback of reported receptors are the lack of selectivity and other trivalent cations such as Fe3+, Al3+ and anions like F- and -OAc frequently interfere with such assays. This paper present the synthesis, characterization & sensor studies of Schiff base containing naphthalene moiety which selectively detect Cr3+ ion by chemodosimetric approach. Using FT-IR, 1H NMR, 13C NMR and ESI mass spectroscopic techniques the probe was characterized. This receptor exhibit more selectivity and sensitivity towards Cr3+ than other divalent and trivalent cations like Mn2+, Zn2+, Co2+, Ni2+, Cd2+, Cu2+, Hg2+, Fe3+, and Al3+ ions. After the addition of chromium ion the receptor get change from yellow to colorless in aqueous medium. But no color change was observed on the addition of other metal ions. Using UV-Vis and PL studies, it was confirmed that the selective hydrolysis of imine group of receptor by Cr3+ ions takes place with high fluorescence enhancement that is corresponding to 1-naphthylamine. Receptor acts as selective chemodosimeter for Cr3+ ions with 2:1 stoichiometry and micro molar detection limit. This chemodosimetric approach was applied successfully for bio-imaging of HeLa cells.

Concepts: Electron, Spectroscopy, Signal transduction, Hydrogen, Nuclear magnetic resonance, Ion, Solid, Ionic bond