Discover the most talked about and latest scientific content & concepts.

Journal: Journal of cellular biochemistry


The microRNA-155 (miR155) regulates various functions of cells. Dysfunction or injury of endothelial cells (ECs) plays an important role in the pathogenesis of various vascular diseases. In this study, we investigated the role and potential mechanisms of miR155 in human brain microvessel endothelial cells (HBMECs) under physiological and pathological conditions. We detected the effects of miR155 silencing on ROS production, NO generation, apoptosis and functions of HBMECs at basal and in response to oxidized low density lipoprotein (ox-LDL). Western blot and q-PCR were used for analyzing the gene expression of epidermal growth factor receptor (EGFR)/ extracellular regulated protein kinases (ERK)/ p38 mitogen-activated protein kinase (p38 MAPK), phosphatidylinositol-3-kinase (PI3K) and serine/threonine kinase(Akt), activated caspase-3 and intercellular adhesion molecule-1 (ICAM-1). Results showed that under both basal and challenge situations: 1) Silencing of miR155 decreased apoptosis and reactive oxygen species (ROS) production of HBMECs, whereas, promoted nitric oxide (NO) generation. 2) Silencing of miR155 increased the proliferation, migration and tube formation ability of HBMECs, while decreased cell adhesion ability. 3) Gene expression analyses showed that EGFR/ ERK/ p38 MAPK and PI3K/Akt were increased and that activated caspase-3 and ICAM-1 mRNA were decreased after knockdown of miR155. In conclusion, knockdown of miR155 could modulate ROS production, NO generation, apoptosis and function of HBMECs via regulating diverse gene expression, such as caspase-3, ICAM-1 and EGFR/ERK/p38 MAPK and PI3K/Akt pathways. This article is protected by copyright. All rights reserved.

Concepts: DNA, Gene, Gene expression, Molecular biology, Signal transduction, Adenosine triphosphate, Mitogen-activated protein kinase, Protein kinases


Cytoplasmic and mitochondrial isoforms of phosphoenolpyruvate carboxykinase (PEPCK-C and PEPCK-M) regulate hepatic gluconeogenesis to control systemic glucose homeostasis. Transcriptional and post-transcriptional mechanisms may govern synthesis, maintenance and cooperative function of compartmentalized PEPCK enzymes. In a comparative analysis, we show that tumor cells consistently transcribe and translate higher levels of enzymatically active PEPCK-C than PEPCK-M and both the isoforms were present at lower levels in normal fibroblasts. Unlike in PEPCK-M, absence of glucose reduced the PEPCK-C mRNA and protein levels only in HepG2 cells. Interestingly, isoflavone genistein significantly increased PEPCK-C mRNA and protein levels in normal fibroblasts indicating cell type specific control mechanisms. Genistein also significantly affected RNA stability of PEPCK-C but not PEPCK-M in HepG2 cells. This was due to the conserved and functional mRNA destabilizing AU rich sequences at the 3'-UTR region of PEPCK-C gene and was confirmed by luciferase reporter assays suggesting that glucose deprivation and genistein targets these sequences for mRNA degradation in HepG2 cells but not in fibroblasts. Analysis of promoter methylation by luciferase reporter assays and bisulfite DNA sequencing suggested that PEPCK-C but not PEPCK-M promoter was activated by 5-aza-2-deoxycytidine by inducing cytosine demethylation at the specific CpG dinucleotides of 5'-UTR region. Taken together, our data suggests stable PEPCK-M activity and identifies intricate relationship between a) mRNA stability and b) promoter DNA methylation as two mechanisms of gene expression that distinguishes PEPCK-C and PEPCK-M enzyme activities in a context and cell type dependent manner during gluconeogenesis. This article is protected by copyright. All rights reserved.

Concepts: DNA, Protein, Gene, Gene expression, Cell, Transcription, Molecular biology, Enzyme


Cell division, a prerequisite for cell proliferation, is a process in which each daughter cell inherits one complete set of chromosomes. The mitotic spindle is a dedicated apparatus for the alignment and segregation of chromosomes. Extracellular signal-regulated kinase (ERK) ½ plays crucial roles in cell cycle progression, particularly during M-phase. Although association with the mitotic spindle has been reported, the precise roles played by ERK in the dynamics of the mitotic spindle and in M-phase progression remain to be elucidated. In this study, we used MEK inhibitors U0126 and GSK1120212 to dissect the roles of ERK in M-phase progression and chromosome alignment. Fluorescence microscopy revealed that ERK is localized to the spindle microtubules in a manner independent of Src kinase, which is one of the kinases upstream of ERK at mitotic entry. ERK inhibition induces an increase in the number of prophase cells and a decrease in the number of anaphase cells. Time-lapse imaging revealed that ERK inhibition perturbs chromosome alignment, thereby preventing cells from entering anaphase. These results suggest that ERK plays a role in M-phase progression by regulating chromosome alignment and demonstrate one of the mechanisms by which the aberration of ERK signaling may produce cancer cells. This article is protected by copyright. All rights reserved.

Concepts: Cell nucleus, Cancer, Eukaryote, Cell division, Chromosome, Cell cycle, Mitosis, Binary fission


Previously, a BRAF-V600E-mutant melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a patient-derived orthotopic xenograft (PDOX) model. Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, trametinib (TRA), an MEK inhibitor, caused tumor regression. In contrast, another MEK inhibitor, cobimetinib (COB) could slow but not arrest growth or cause regression of the melanoma. First-line therapy temozolomide (TEM) could slow but not arrest tumor growth or cause regression. In addition, vemurafenib (VEM) was not effective even though VEM is supposed to target the BRAF-V600E mutation. We also previously demonstrated that tumor-targeting with S. typhimurium A1-R combined with TEM was significantly more effective than either S. typhimurium A1-R alone or TEM alone on the melanoma PDOX with a BRAF-V600E mutation. The present study used this PDOX model of melanoma to test its sensitivity to VEM combined with S. typhimurium A1-R compared to VEM alone and VEM combined with COB. VEM combined with S. typhimurium A1-R was significantly more effective than VEM alone or VEM combined with COB (p = 0.0216) which is currently first line therapy for advanced melanoma with BRAF-V600E mutation. This article is protected by copyright. All rights reserved.

Concepts: Immunology, Animal testing, Mouse, Salmonella enterica, Salmonella, All rights reserved, Copyright, Nude mouse


Post kala-azar dermal leishmaniasis (PKDL) is often considered to be the anthroponotic reservoir of visceral leishmaniasis (VL) in India. A better understanding of the host immune-response in dermal lesions of PKDL patients is therefore of utmost significance to minimize such patients and to restrict VL transmission. Although the innate immune response is known to play an important role in parasite clearance from dermal lesions, the actual contribution of innate cells to the pathogenicity of PKDL is poorly understood. The present study explored the immune-pathogenesis of PKDL patients to understand the expression of CD62L, CD11b, CXCL8/IL-8, and MIP1-α and their contribution in signaling during innate cell trafficking. Twenty-five individuals were enrolled, who comprised eight active and untreated macular cases, seven active and untreated cases with papulo-nodular PKDL manifestations, five successfully treated post PKDL cases and five healthy individuals from a non-endemic region of Bihar, India. The immunological investigation was performed on biopsy specimens prepared with a disaggregation technique and blood samples. We observed that the PMNs in nodular patients displayed decreased L-selectin (CD62L) levels and increased integrin (CD11b) expression compared with those in macular patients. Further analysis showed that lower PMN extravasation in macular patients occurred because of inadequate CXCL8/ IL-8 release. In summary, Leishmania donovani (L. donovani) infection in macular PKDL patients decreased leucocyte rolling (L-selectin shedding) and induced up-regulation of the cellular signaling factors involved in pathogenesis (ERK1/2) as well as down regulated the signaling elements (p38 MAPK) involved in the Th1 response, especially in PMNs.


The three-membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumour suppressors and oncogenes. In mouse models the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over-expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the ‘sphingolipid rheostat’ from ceramide to sphingosine-1-phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, while an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre-mediated excision. Furthermore we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid-mediated apoptosis, and elucidate the mechanism of cross-talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T-lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx-driven lymphomagenesis. This article is protected by copyright. All rights reserved.

Concepts: DNA, Protein, Gene, Gene expression, Cancer, Enzyme, Organism, Transcription factor


CA125 is serum tumor marker consisting of an epitope carried by a portion of the extremely large (> 3 MDa), heavily glycosylated cell surface transmembrane mucin, MUC16. In malignancies, membrane bound mucins lose their polarized distribution, become aberrantly over-expressed and protect tumor cells from the actions of chemotherapeutic agents as well as the immune system. Previously, we described stimulation of MUC16 expression by the proinflammatory cytokines, tumor necrosis factor α (TNFα) and interferon γ (IFNγ), in breast and ovarian cancer cells and tissues. Herein, we show that PPARγ modulates cytokine-stimulated MUC16 in a complex manner: at low concentrations (< 10 µM) rosiglitazone further potentiates cytokine-driven MUC16 expression while at high concentrations (> 20 µM) rosiglitazone antagonizes cytokine stimulation. Rosiglitazone actions were fully reversible by the PPARγ antagonist, GW9662. Furthermore, siRNA-mediated PPARγ knockdown also prevented a large portion of high dose rosiglitazone suppression of MUC16 expression indicating that rosiglitazone inhibition is largely PPARγ-dependent. Cytokines greatly (>75%) suppressed PPARγ expression. Conversely, PPARγ activation by rosiglitazone at either low or high concentrations greatly (>75%) suppressed NFκB/p65 expression. NFκB/p65 expression was largely preserved in the presence of cytokines at low, but not high, rosiglitazone concentrations accounting for the different concentration dependent effects on MUC16 expression. Collectively, these studies demonstrate that PPARγ is an important modulator of MUC16 expression. The ability to deliver high doses of PPARγ agonists to MUC16-expressing tumors offers an avenue to reduce expression of this protective glycoprotein and increase tumor sensitivity to killing by chemotherapeutic drugs and the immune system. This article is protected by copyright. All rights reserved.

Concepts: Immune system, Antibody, DNA, Cancer, Metastasis, Oncology, Apoptosis, Chemotherapy


A high-fat diet (HFD) has been associated with heart failure and arrhythmias; however, the molecular mechanisms underlying these associations are poorly understood. The mitochondria play an essential role in optimal heart performance, most of the energy for which is obtained from the oxidation of fatty acids. As such, chronic exposure to excess fatty acids may cause mitochondrial dysfunction and heart failure. To investigate the effects of a HFD on the mitochondrial function in the myocardium, 40 male rats were randomly divided into two groups and fed with either a normal diet or a HFD for 28 weeks. The myocardial lipid content, cardiac parameters and function, and mitochondrial morphology and function were evaluated. The expression of a number of genes involved in mitochondrial dynamics was measured using quantitative polymerase chain reaction and Western blot analyses. Proteomic analysis was also performed to identify the proteins affected by HFD treatment. Significant fat deposition in the myocardia, cardiac hypertrophy, and cardiac dysfunction were all observed in HFD-treated rats. Electron microscopy showed abnormal mitochondrial density and morphology. In addition, abnormal expression of genes involved in mitochondrial dynamics, decreased mitochondrial DNA copy numbers, reduced complex I-III and citrate synthase activities, and decreased mitochondrial respiration were observed in HFD-treated rats. High performance liquid chromatography showed downregulated adenosine triphosphate (ATP) and adenosine diphosphate levels and an increased adenosine monophosphate (AMP)/ATP ratio. Proteomic analysis confirmed the alteration of mitochondrial function and impaired expression of proteins involved in mitochondrial dynamics in HFD-treated rats. Mitochondrial dysfunction and impaired mitochondrial dynamics play an important role in heart dysfunction induced by a HFD, thus presenting a potential therapeutic target for the treatment of heart disease.


Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that cleave nearly all components of the extracellular matrix as well as many other soluble and cell-associated proteins. MMPs have been implicated in normal physiological processes, including development, and in the acquisition and progression of the malignant phenotype. Disappointing results from a series of clinical trials testing small molecule, broad spectrum MMP inhibitors as cancer therapeutics led to a re-evaluation of how MMPs function in the tumor microenvironment, and ongoing research continues to reveal that these proteins play complex roles in cancer development and progression. It is now clear that effective targeting of MMPs for therapeutic benefit will require selective inhibition of specific MMPs. Here, we provide an overview of the MMP family and its biological regulators, the tissue inhibitors of metalloproteinases (TIMPs). We then summarize recent research from model systems that elucidate how specific MMPs drive the malignant phenotype of breast cancer cells, including acquisition of cancer stem cell features and induction of the epithelial-mesenchymal transition, and we also outline clinical studies that implicate specific MMPs in breast cancer outcomes. We conclude by discussing ongoing strategies for development of inhibitors with therapeutic potential that are capable of selectively targeting the MMPs most responsible for tumor promotion, with special consideration of the potential of biologics including antibodies and engineered proteins based on the TIMP scaffold. This article is protected by copyright. All rights reserved.

Concepts: Cancer, Breast cancer, Metastasis, Oncology, Extracellular matrix, The Canon of Medicine, Matrix metalloproteinase, Tissue inhibitor of metalloproteinases


MUC1 is a large cell surface mucin glycoprotein that plays diverse roles in both normal and tumor cell biology. These roles include mucosal hydration and protection, inhibition of embryo implantation, protection of tumor cells from the immune system and reduction of cytotoxic drug uptake. Similarly, the EGFR family of cell surface receptors drives many normal developmental processes as well as various aspects of tumor growth and gene expression. EGFR family members have been demonstrated to form complexes with MUC1 in various cellular contexts. Nonetheless, the role that EGFR activation plays in modulating MUC1 levels has not been considered. In this study we demonstrate that activated EGFR drives high level MUC1 expression in multiple cell lines of uterine adenocarcinoma and pancreatic cancer origins. In some cells, addition of exogenous EGFR ligands (EGF or HB-EGF) elevates MUC1 levels while addition of the EGFR tyrosine kinase inhibitor, AG1478, reduces MUC1 levels. The thiazolidinedione, rosiglitazone, previously shown to reduce progesterone-stimulated MUC1 expression, also blocks EGFR ligand-driven MUC1 expression. This activity was observed at relatively high rosiglitazone concentrations (above 10 µM) and appeared to be largely PPARγ independent indicating a novel utility of this drug to reduce mucin-expression in various tumor settings. Collectively, these data demonstrate that: 1) activation of EGFR stimulates MUC1 expression in multiple cellular contexts and; 2) it may be possible to develop useful interventions to reduce MUC1 expression as a complementary strategy for tumor therapy. J. Cell. Biochem. © 2013 Wiley Periodicals, Inc.

Concepts: Immune system, Gene, Cell nucleus, Gene expression, Cell, Cancer, Oncology, Tumor