SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Journal of cellular and molecular medicine

3

Vascular calcification (VC) is caused by hydroxyapatite deposition in the intimal and medial layers of the vascular wall, leading to severe cardiovascular events in patients with hypertension, chronic kidney disease and diabetes mellitus. VC occurrences involve complicated mechanism networks, such as matrix vesicles or exosomes production, osteogenic differentiation, reduced cell viability, aging and so on. However, with present therapeutic methods targeting at VC ineffectively, novel targets for VC treatment are demanded. Exosomes are proven to participate in VC and function as initializers for mineral deposition. Secreted exosomes loaded with microRNAs are also demonstrated to modulate VC procession in recipient vascular smooth muscle cells. In this review, we targeted at the roles of exosomes during VC, especially at their effects on transporting biological information among cells. Moreover, we will discuss the potential mechanisms of exosomes in VC.

3

Acquired immune deficiency syndrome (AIDS), caused by infection with human immunodeficiency virus (HIV), is associated with gastrointestinal disease, systemic immune activation and changes in the gut microbiota. Here, we aim to investigate the gut microbiota patterns of HIV-infected individuals and HIV-uninfected individuals in populations from South China. We enrolled 33 patients with HIV (14 participants treated with highly active antiretroviral therapy [HAART] for more than 3 months; the remaining 19 individuals had not received treatment) and 35 healthy controls (HC) for a cross-sectional comparison of gut microbiota using stool samples. Gut microbial communities were profiled by sequencing the bacterial 16S rRNA genes. Dysbiosis was more common among patients with AIDS compared with healthy individuals. Dysbiosis was characterized by decreased α-diversity, low mean counts of Bacteroidetes, Faecalibacterium, Prevotella, Bacteroides vulgatus, Dialister and Roseburia inulnivorans, and high mean counts of Proteobacteria, Enterococcus, Streptococcus, Lactobacillus, Lachnociostridium, Ruminococcus gnavus and Streptococcus vestibularis. Increased abundance of Bacilli was observed in homosexual patients. Proteobacteria were higher among heterosexual patients with HIV infections. Tenericutes were higher among patients with history of intravenous drug abuse. Restoration of gut microbiota diversity and a significant increase in abundance of Faecalibacterium, Blautia and Bacteroides were found in patients receiving HAART compared to those who did not receive. HIV infection-associated dysbiosis is characterized by decreased levels of α-diversity and Bacteroidetes, increased levels of Proteobacteria and the alterations of gut microbiota correlate with the route of HIV transmission. The imbalanced faecal microbiota of HIV infection is partially restored after therapy.

Concepts: Antiretroviral drug, HIV, AIDS, Protease inhibitor, Immune system, Bacteria, Gut flora, Immunodeficiency

3

The recruitment of bone marrow (BM)-derived progenitor cells to the lung is related to pulmonary remodelling and the pathogenesis of pulmonary hypertension (PH). Although sildenafil is a known target in PH treatment, the underlying molecular mechanism is still elusive. To test the hypothesis that the therapeutic effect of sildenafil is linked to the reduced recruitment of BM-derived progenitor cells, we induced pulmonary remodelling in rats by two-week exposure to chronic hypoxia (CH, 10% oxygen), a trigger of BM-derived progenitor cells. Rats were treated with either placebo (saline) or sildenafil (1.4 mg/kg/day ip) during CH. Control rats were kept in room air (21% oxygen) with no treatment. As expected, sildenafil attenuated the CH-induced increase in right ventricular systolic pressure and right ventricular hypertrophy. However, sildenafil suppressed the CH-induced increase in c-kit(+) cells in the adventitia of pulmonary arteries. Moreover, sildenafil reduced the number of c-kit(+) cells that colocalize with tyrosine kinase receptor 2 (VEGF-R2) and CD68 (a marker for macrophages), indicating a positive effect on moderating hypoxia-induced smooth muscle cell proliferation and inflammation without affecting the pulmonary levels of hypoxia-inducible factor (HIF)-1α. Furthermore, sildenafil depressed the number of CXCR4(+) cells. Collectively, these findings indicate that the improvement in pulmonary haemodynamic by sildenafil is linked to decreased recruitment of BM-derived c-kit(+) cells in the pulmonary tissue. The attenuation of the recruitment of BM-derived c-kit(+) cells by sildenafil may provide novel therapeutic insights into the control of pulmonary remodelling.

Concepts: Signal transduction, Blood, Atherosclerosis, Heart, Receptor tyrosine kinase, Artery, Pulmonary artery, Smooth muscle

3

Highly up-regulated in liver cancer (HULC) was originally identified as the most overexpressed long non-coding RNA in hepatocellular carcinoma. Since its discovery, the aberrant up-regulation of HULC has been demonstrated in other cancer types, including gastric cancer, pancreatic cancer, osteosarcoma and hepatic metastasis of colorectal cancer. Recent discoveries have also shed new light on the upstream molecular mechanisms underlying HULC deregulation. As an oncogene, HULC promotes tumorigenesis by regulating multiple pathways, such as down-regulation of EEF1E1, promotion of abnormal lipid metabolism, and up-regulation of sphingosine kinase 1. Pertinent to clinical practice, a genetic variant in the HULC gene has been found to alter the risk for hepatocellular carcinoma and oesophageal cancer, whereas cancer patients with high or low expression of HULC exhibit different clinical outcome. These findings highlighted the pathogenic role and clinical utility of HULC in human cancers. Further efforts are warranted to promote the development of HULC-directed therapeutics.

Concepts: DNA, Vitamin D, Gene expression, Cancer, Oncology, RNA, Gastrointestinal cancer, Oncogene

3

Many B-cell acute and chronic leukaemias tend to be resistant to killing by natural killer (NK) cells. The introduction of chimeric antigen receptors (CAR) into T cells or NK cells could potentially overcome this resistance. Here, we extend our previous observations on the resistance of malignant lymphoblasts to NK-92 cells, a continuously growing NK cell line, showing that anti-CD19-CAR (αCD19-CAR) engineered NK-92 cells can regain significant cytotoxicity against CD19 positive leukaemic cell lines and primary leukaemia cells that are resistant to cytolytic activity of parental NK-92 cells. The ‘first generation’ CAR was generated from a scFv (CD19) antibody fragment, coupled to a flexible hinge region, the CD3ζ chain and a Myc-tag and cloned into a retrovirus backbone. No difference in cytotoxic activity of NK-92 and transduced αCD19-CAR NK-92 cells towards CD19 negative targets was found. However, αCD19-CAR NK-92 cells specifically and efficiently lysed CD19 expressing B-precursor leukaemia cell lines as well as lymphoblasts from leukaemia patients. Since NK-92 cells can be easily expanded to clinical grade numbers under current Good Manufactoring Practice (cGMP) conditions and its safety has been documented in several phase I clinical studies, treatment with CAR modified NK-92 should be considered a treatment option for patients with lymphoid malignancies.

Concepts: Immune system, Lymphocyte, Antibody, Cell, Cell biology, Natural killer cell, T cell, Cytotoxicity

3

The retinal pigment epithelium (RPE), a monolayer located between the photoreceptors and the choroid, is constantly damaged by oxidative stress, particularly because of reactive oxygen species (ROS). As the RPE, because of its physiological functions, is essential for the survival of the retina, any sustained damage may consequently lead to loss of vision. Exosomes are small membranous vesicles released into the extracellular medium by numerous cell types, including RPE cells. Their cargo includes genetic material and proteins, making these vesicles essential for cell-to-cell communication. Exosomes may fuse with neighbouring cells influencing their fate. It has been observed that RPE cells release higher amounts of exosomes when they are under oxidative stress. Exosomes derived from cultured RPE cells were isolated by ultracentrifugation and quantified by flow cytometry. VEGF receptors (VEGFR) were analysed by both flow cytometry and Western blot. RT-PCR and qPCR were conducted to assess mRNA content of VEGFRs in exosomes. Neovascularization assays were performed after applying RPE exosomes into endothelial cell cultures. Our results showed that stressed RPE cells released a higher amount of exosomes than controls, with a higher expression of VEGFR in the membrane, and enclosed an extra cargo of VEGFR mRNA. Angiogenesis assays confirmed that endothelial cells increased their tube formation capacity when exposed to stressed RPE exosomes.

Concepts: Cell, Angiogenesis, Cell biology, Blood vessel, Vascular endothelial growth factor, Retina, Endothelium, Retinal pigment epithelium

2

Liver cells isolated from pre-clinical models are essential tools for studying liver (patho)physiology, and also for screening new therapeutic options. We aimed at developing a new antibody-free isolation method able to obtain the four main hepatic cell types (hepatocytes, liver sinusoidal endothelial cells [LSEC], hepatic macrophages [HMΦ] and hepatic stellate cells [HSC]) from a single rat liver. Control and cirrhotic (CCl4 and TAA) rat livers (n = 6) were perfused, digested with collagenase and mechanically disaggregated obtaining a multicellular suspension. Hepatocytes were purified by low revolution centrifugations while non-parenchymal cells were subjected to differential centrifugation. Two different fractions were obtained: HSC and mixed LSEC + HMΦ. Further LSEC and HMΦ enrichment was achieved by selective adherence time to collagen-coated substrates. Isolated cells showed high viability (80%-95%) and purity (>95%) and were characterized as functional: hepatocytes synthetized albumin and urea, LSEC maintained endocytic capacity and in vivo fenestrae distribution, HMΦ increased expression of inflammatory markers in response to LPS and HSC were activated upon in vitro culture. The 4 in 1 protocol allows the simultaneous isolation of highly pure and functional hepatic cell sub-populations from control or cirrhotic single livers without antibody selection.

2

Red wine consists of a large amount of compounds such as resveratrol, which exhibits chemopreventive and therapeutic effects against several types of cancers by targeting cancer driver molecules. In this study, we tested the anti-lung cancer activity of 11 red wine components and reported that a natural polyphenol compound ellagic acid (EA) inhibited lung cancer cell proliferation at an efficacy approximately equal to that of resveratrol. EA markedly increased the expression of the autophagosomal marker LC3-II as well as inactivation of the mechanistic target of rapamycin signalling pathway. EA elevated autophagy-associated cell death by down-regulating the expression of cancerous inhibitor of protein phosphatase 2A (CIP2A), and CIP2A overexpression attenuated EA-induced autophagy of lung cancer cells. Treating tumour-bearing mice with EA resulted in significant inhibition of tumour growth with suppression of CIP2A levels and increased autophagy. In addition, EA potentiated the inhibitory effects of the natural compound celastrol on lung cancer cells in vitro and in vivo by enhancing autophagy and down-regulating CIP2A. These findings indicate that EA may be a promising chemotherapeutic agent for lung cancer, and that the combination of EA and celastrol may have applicability for the treatment of this disease.

2

The anaphylatoxin C5a is generated upon activation of the complement system, a crucial arm of innate immunity. C5a mediates proinflammatory actions via the C5a receptor C5aR1 and thereby promotes host defence, but also modulates tissue homeostasis. There is evidence that the C5a/C5aR1 axis is critically involved both in physiological bone turnover and in inflammatory conditions affecting bone, including osteoarthritis, periodontitis, and bone fractures. C5a induces the migration and secretion of proinflammatory cytokines of osteoblasts. However, the underlying mechanisms remain elusive. Therefore, in this study we aimed to determine C5a-mediated downstream signalling in osteoblasts. Using a whole-genome microarray approach, we demonstrate that C5a activates mitogen-activated protein kinases (MAPKs) and regulates the expression of genes involved in pathways related to insulin, transforming growth factor-β and the activator protein-1 transcription factor. Interestingly, using coimmunoprecipitation, we found an interaction between C5aR1 and Toll-like receptor 2 (TLR2) in osteoblasts. The C5aR1- and TLR2-signalling pathways converge on the activation of p38 MAPK and the generation of C-X-C motif chemokine 10, which functions, among others, as an osteoclastogenic factor. In conclusion, C5a-stimulated osteoblasts might modulate osteoclast activity and contribute to immunomodulation in inflammatory bone disorders.

2

Given sex-related differences in brain disorders, it is of interest to study if there is a sex difference in the permeability of the blood-cerebrospinal fluid barrier (BCSFB) and the blood-brain barrier (BBB). The CSF/serum albumin ratio (QAlb ) is a standardized biomarker that evaluates the function of these barriers. In previous studies, contradictory results have been reported with respect to sex difference using this quotient, possibly because of small population sizes and heterogeneity with respect to ages. QAlb measurements in more than 20 000 patients between 1 and 90 years visiting our hospitals revealed a significant sex difference in all age groups also when excluding patients with pathologically high CSF albumin > 400 mg/L. Similar pattern was found in 335 healthy volunteers in similar age intervals. Although also other factors are likely important, our observation is consistent with lower integrity of the brain barriers in males. If the difference in QAlb is caused mainly by a difference in barrier function, this may require different drug doses and strategies for efficient central nervous system (CNS) delivery in males and females, as well as it may indicate differences in brain metabolism. Moreover, our study emphasizes that different reference values should be used both for different ages and sexes.