SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance

178

Several studies have correlated elevations in cardiac biomarkers of injury post marathon with transient and reversible right ventricular (RV) systolic dysfunction as assessed by both transthoracic echocardiography (TTE) and cardiovascular magnetic resonance (CMR). Whether or not permanent myocardial injury occurs due to repeated marathon running in the aging population remains controversial.

Concepts: Running, Cardiac muscle, Circulatory system, Marathon, Muscle, Cardiovascular system, Heart, Echocardiography

172

Image-guided endovascular interventions have gained increasing popularity in clinical practice, and magnetic resonance imaging (MRI) is emerging as an attractive alternative to X-ray fluoroscopy for guiding such interventions. Steering catheters by remote control under MRI guidance offers unique challenges and opportunities.

Concepts: Artificial pacemaker, Angiography, Nuclear magnetic resonance, Radiography, X-ray, Radiology, Medical imaging, Magnetic resonance imaging

169

BACKGROUND: The presence of myocardial fibrosis is associated with worse clinical outcomes in hypertrophic cardiomyopathy (HCM). Cardiovascular magnetic resonance (CMR) with late gadolinium enhancement (LGE) sequences can detect regional, but not diffuse myocardial fibrosis. Post-contrast T1 mapping is an emerging CMR technique that may enable the non-invasive evaluation of diffuse myocardial fibrosis in HCM. The purpose of this study was to non-invasively detect and quantify diffuse myocardial fibrosis in HCM with CMR and examine its relationship to diastolic performance. METHODS: We performed CMR on 76 patients - 51 with asymmetric septal hypertrophy due to HCM and 25 healthy controls. Left ventricular (LV) morphology, function and distribution of regional myocardial fibrosis were evaluated with cine imaging and LGE. A CMR T1 mapping sequence determined the post-contrast myocardial T1 time as an index of diffuse myocardial fibrosis. Diastolic function was assessed by transthoracic echocardiography. RESULTS: Regional myocardial fibrosis was observed in 84% of the HCM group. Post-contrast myocardial T1 time was significantly shorter in patients with HCM compared to controls, consistent with diffuse myocardial fibrosis (498 +/- 80 ms vs. 561 +/- 47 ms, p < 0.001). In HCM patients, post-contrast myocardial T1 time correlated with mean E/e' (r = -0.48, p < 0.001). CONCLUSIONS: Patients with HCM have shorter post-contrast myocardial T1 times, consistent with diffuse myocardial fibrosis, which correlate with estimated LV filling pressure, suggesting a mechanistic link between diffuse myocardial fibrosis and abnormal diastolic function in HCM.

Concepts: Hypertrophy, Echocardiography, Nuclear magnetic resonance, Heart, Cardiomyopathy, Diastolic dysfunction, Cardiology, Hypertrophic cardiomyopathy

28

BACKGROUND: The purpose of this study was to evaluate the feasibility of the magnetic resonance (MR) conditional pacemaker (PM) system (Evia SR-T and DR-T with Safio S leads) under MR conditions. METHODS: Patients with standard PM indications and Evia PM were eligible for enrollment in this single center prospective non-randomized pilot study. Patients underwent MR of the brain and lower lumbar spine at 1.5 Tesla. Atrial (RA) und ventricular (RV) lead parameters (sensing, pacing threshold [PTH], pacing impedance) were assessed immediately before (baseline follow-up [FU]) and immediately after MRI (1st FU), after 1 month (2nd FU) and 3 months (3rd FU). The effect of MR on serious adverse device effect (SADE) free-rate, on atrial and ventricular sensing (AS/VS; mV) and atrial (RA) and ventricular (RV) pacing thresholds (PTH; V/0.4 ms) were investigated between baseline and 2nd FU. Continuous variables are expressed as mean +/- SD and were compared using paired Student’s t-test. A p < 0.05 was considered significant. RESULTS: Thirty-one patients were enrolled. One patient had to be excluded because of an enrollment violation. Therefore, data of 30 patients (female 12 [40%], age 73 +/- 12 years, dual chamber PM 15 [50%]) were included in this analysis. No MR related SADE occurred. Lead measurements were not statistically different between the baseline FU and the 2nd FU (AS/VS at baseline 3.2 +/- 2.1/15.0 +/- 6.0, at 2nd FU 3.2 +/- 2.1/14.9 +/- 6.5; p = ns. RA-PTH/RV-PTH at baseline 0.68 +/- 0.18/0.78 +/- 0.22, at 2nd FU 0.71 +/- 0.24/0.78 +/- 0.22; p = ns). The presence of the permanent pacemakers led to MR imaging artifacts on diffusion weighted sequences of the brain, but did not affect other sequences (e.g. FLAIR and T2 weighted spin-echo images). CONCLUSION: The use of the MR conditional Evia PM in a MR environment under predefined conditions is feasible. No MR related SADEs nor clinically relevant changes in device functions occurred.

Concepts: Nuclear magnetic resonance, Transcutaneous pacing, Student's t-test, Statistics, Brain, Lumbar vertebrae, Magnetic resonance imaging, Artificial pacemaker

27

BACKGROUND: The late cardiotoxic effects of anthracycline chemotherapy influence morbidity and mortality in the growing population of childhood cancer survivors. Even with lower anthracycline doses, evidence of adverse cardiac remodeling and reduced exercise capacity exist. We aim to examine the relationship between cardiac structure, function and cardiovascular magnetic resonance (CMR) tissue characteristics with chemotherapy dose and exercise capacity in childhood cancer survivors. METHODS: Thirty patients (15 +/- 3 years), at least 2 years following anthracycline treatment, underwent CMR, echocardiography, and cardiopulmonary exercise testing (peak VO2). CMR measured ventricular function, mass, T1 and T2 values, and myocardial extracellular volume fraction, ECV, a measure of diffuse fibrosis based on changes in myocardial T1 values pre- and post-gadolinium. Cardiac function was also assessed with conventional and speckle tracking echocardiography. RESULTS: Patients had normal LVEF (59 +/- 7%) but peak VO2 was 17% lower than age-predicted normal values and were correlated with anthracycline dose (r = -0.49). Increased ECV correlated with decreased mass/volume ratio (r = -0.64), decreased LV wall thickness/height ratio (r = -0.72), lower peak VO2(r = -0.52), and higher cumulative dose (r = 0.40). Echocardiographic measures of systolic and diastolic function were reduced compared to normal values (p < 0.01), but had no relation to ECV, peak VO2 or cumulative dose. CONCLUSIONS: Myocardial T1 and ECV were found to be early tissue markers of ventricular remodeling that may represent diffuse fibrosis in children with normal ejection fraction post anthracycline therapy, and are related to cumulative dose, exercise capacity and myocardial wall thinning.

Concepts: Blood, Heart, Echocardiography, Chemotherapy, Blood pressure, Anthracycline, Cardiology, Ejection fraction

21

Heart failure with preserved ejection fraction (HFpEF) is a poorly characterized condition. We aimed to phenotype patients with HFpEF using multiparametric stress cardiovascular magnetic resonance imaging (CMR) and to assess the relationship to clinical outcomes.

Concepts: Avicenna, The Canon of Medicine, Myocardial infarction, Nuclear magnetic resonance, Heart failure, Cardiology, Magnetic resonance imaging, Ejection fraction

20

Non-invasive cardiac imaging allows detection of cardiac amyloidosis (CA) in patients with aortic stenosis (AS). Our objective was to estimate the prevalence of clinically suspected CA in patients with moderate and severe AS referred for cardiovascular magnetic resonance (CMR) in age and gender categories, and assess associations between AS-CA and all-cause mortality.

Concepts: Epidemiology, Prevalence, Medical terms, Heart, Medical statistics

16

These “Guidelines for training in Cardiovascular Magnetic Resonance” were developed by the Certification Committee of the Society for Cardiovascular Magnetic Resonance (SCMR) and approved by the SCMR Board of Trustees.

13

Parametric mapping techniques provide a non-invasive tool for quantifying tissue alterations in myocardial disease in those eligible for cardiovascular magnetic resonance (CMR). Parametric mapping with CMR now permits the routine spatial visualization and quantification of changes in myocardial composition based on changes in T1, T2, and T2*(star) relaxation times and extracellular volume (ECV). These changes include specific disease pathways related to mainly intracellular disturbances of the cardiomyocyte (e.g., iron overload, or glycosphingolipid accumulation in Anderson-Fabry disease); extracellular disturbances in the myocardial interstitium (e.g., myocardial fibrosis or cardiac amyloidosis from accumulation of collagen or amyloid proteins, respectively); or both (myocardial edema with increased intracellular and/or extracellular water). Parametric mapping promises improvements in patient care through advances in quantitative diagnostics, inter- and intra-patient comparability, and relatedly improvements in treatment. There is a multitude of technical approaches and potential applications. This document provides a summary of the existing evidence for the clinical value of parametric mapping in the heart as of mid 2017, and gives recommendations for practical use in different clinical scenarios for scientists, clinicians, and CMR manufacturers.

Concepts: Blood, Amyloidosis, Circulatory system, Cardiac muscle, Spin echo, Magnetic resonance imaging, Heart, Nuclear magnetic resonance

12

Identifying the patients with hypertrophic cardiomyopathy (HCM) in whom the risk of sudden cardiac death (SCD) justifies the implantation of a cardioverter-defibrillator (ICD) in primary prevention remains challenging. Different risk stratification and criteria are used by the European and American guidelines in this setting. We sought to evaluate the role of cardiovascular magnetic resonance (CMR) late gadolinium enhancement (LGE) in improving these risk stratification strategies.