Discover the most talked about and latest scientific content & concepts.

Journal: Journal of agricultural and food chemistry


Abstract In response to the suggestion that an increase in the incidence of celiac disease might be attributable to an increase in the gluten content of wheat resulting from wheat breeding, a survey of data from the 20th and 21st centuries for the U.S. was carried out. The results do not support the likelihood that wheat breeding has increased the protein content (proportional to gluten content) of wheat in the U.S. Possible roles for changes in the per capita consumption of wheat flour and the use of vital gluten as a food additive are discussed.

Concepts: Wheat, Maize, Coeliac disease, Rye, Gluten, Flour, Gluten-free diet, Wheat allergy


The compositional equivalency between GM crops and non-transgenic comparators has been a fundamental component of the human health safety assessment for twenty years. During this period of time, a large amount of information has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods; additionally the genetic mechanisms behind these changes have been elucidated. After two decades, we encourage scientists to objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general requirement for these studies to support the safety assessment of transgenic crops. We conclude that suspect unintended compositional effects that could be caused by genetic modification have not materialized based on this substantial literature. Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified based on scientific uncertainty.

Concepts: Time, Genetics, Health, Human, Physics, Genetically modified organism, Genetically modified food, Genetic engineering


Removal of pesticide residues from fresh produce is important to reduce pesticide exposure to humans. This study investigated the effectiveness of commercial and homemade washing agents in the removal of surface and internalized pesticide residues from apples. Surface-enhanced Raman scattering (SERS) mapping and liquid chromatography tandem mass spectrometry (LC-MS/MS) methods were used to determine the effectiveness of different washing agents in removing pesticide residues. Surface pesticide residues were most effectively removed by sodium bicarbonate (baking soda, NaHCO3) solution when compared to either tap water or Clorox bleach. Using a 10 mg/mL NaHCO3 washing solution, it took 12 and 15 min to completely remove thiabendazole or phosmet surface residues, respectively, following a 24 h exposure to these pesticides, which were applied at a concentration of 125 ng/cm(2). LC-MS/MS results showed, however, that 20% of applied thiabendazole and 4.4% of applied phosmet had penetrated into the apples following the 24 h exposure. Thiabendazole, a systemic pesticide, penetrated 4-fold deeper into the apple peel than did phosmet, a non-systemic pesticide, which led to more thiabendazole residues inside the apples, which could not be washed away using the NaHCO3 washing solution. This study gives us the information that the standard postharvest washing method using Clorox bleach solution for 2 min is not an effective means to completely remove pesticide residues on the surface of apples. The NaHCO3 method is more effective in removing surface pesticide residues on apples. In the presence of NaHCO3, thiabendazole and phosmet can degrade, which assists the physical removal force of washing. However, the NaHCO3 method was not completely effective in removing residues that have penetrated into the apple peel. The overall effectiveness of the method to remove all pesticide residues diminished as pesticides penetrated deeper into the fruit. In practical application, washing apples with NaHCO3 solution can reduce pesticides mostly from the surface. Peeling is more effective to remove the penetrated pesticides; however, bioactive compounds in the peels will become lost too.

Concepts: Pesticide, Vinegar, Insecticide, Pesticide residue, Sodium bicarbonate, Sodium carbonate, Natron, Peel


Propolis is a natural honeybee hive product with the potential for use in the treatment of dermatological conditions, such as cutaneous abrasions, burns, and acne. In this study, we investigated whether propolis stimulates hair growth in mice. Ethanol-extracted propolis, which contains various physiologically active substances such as caffeic acid and kaempferol, stimulated anagen induction in the shaved back skin. Anagen induction occurred without any detectable abnormalities in the shape of the hair follicles (HFs), hair stem cells in the bulge, proliferating hair matrix keratinocytes in the hair bulb, or in the localization of versican in the dermal papilla. Propolis treatment also stimulated migration of hair matrix keratinocytes into the hair shaft in HFs during late anagen in the depilated back skin. Organotypic culture of skin containing anagen stage HFs revealed significant stimulation of hair matrix keratinocyte proliferation by propolis. Furthermore, propolis facilitated the proliferation of epidermal keratinocytes. These results indicate that propolis stimulates hair growth by inducing hair keratinocyte proliferation.

Concepts: Skin, Epidermis, Caffeic acid, Hair, Hair follicle, Facial hair, Sebaceous gland, Propolis


Coumarin as an additive or as a constituent of tonka beans or tonka extracts is banned from food in the United States due to its potentially adverse side effects. However, coumarin in food from other natural ingredients is not regulated. “True Cinnamon” refers to the dried inner bark of Cinnamomum verum. Other cinnamon species, C. cassia, C. loureiroi, and C. burmannii, commonly known as cassia, are also sold in the U.S. as cinnamon. In the present study, coumarin and other marker compounds were analyzed in authenticated cinnamon bark samples as well as locally bought cinnamon samples, cinnamon-flavored foods, and cinnamon-based food supplements using a validated UPLC-UV/MS method. The experimental results indicated that C. verum bark contained only traces of coumarin, whereas barks from all three cassia species, especially C. loureiroi and C. burmannii, contained substantial amounts of coumarin. These species could be potential sources of coumarin in cinnamon-flavored food in the U.S. Coumarin was detected in all locally bought cinnamon, cinnamon-flavored foods, and cinnamon food supplements. Their chemical profiles indicated that the cinnamon samples and the cinnamon in food supplements and flavored foods were probably Indonesian cassia, C. burmannii.

Concepts: United States, Cinnamon, Cinnamomum, Spice, Cinnamomum aromaticum, Cinnamomum burmannii, Malabathrum, Cinnamaldehyde


There is much concern about the toxicological effects of synthetic hair dyes. As an alternative approach, renewable waste blackcurrant ( Ribes nigrum L.) fruit skins from the fruit pressing industry were extracted using acidified water with a solid-phase purification stage. Anthocyanin colorants were isolated in good yields (2-3% w/ w) and characterized by HPLC. Sorption of anthocyanins onto hair followed a Freundlich isotherm; anthocyanin-anthocyanin aggregation interactions enabled high buildup on the substrate. Sorption energy of cyanidin-3- O-glucoside (monosaccharide) > cyanidin-3- O-rutinoside (disaccharide), but sorption properties of different anthocyanin glucosides were very similar. Intense blue-colored dyeing on hair could be achieved with λmax-vis at 580 nm, typical of the anionic quinonoid base; it is suggested that hair provides an environment that enables the stabilization of the anionic quinonoid base on adsorption through association with cations in the hair and copigmentation effects. Dyeings were stable to multiple washes.


Onion and garlic are renowned for their roles as functional foods. The health benefits of garlic are attributed to di-2-propenyl thiosulfinate (allicin), a sulfur compound found in disrupted garlic but not found in disrupted onion. Recently, onions have been grown with repressed lachrymatory factor synthase (LFS) activity, which causes these onions to produce increased amounts of di-1-propenyl thiosulfinate, an isomer of allicin. This investigation into the key health attributes of LFS-silenced (tearless) onions demonstrates that they have some attributes more similar to garlic and that this is likely due to the production of novel thiosulfinate or metabolites. The key finding was that collagen-induced in vitro platelet aggregation was significantly reduced by tearless onion extract over normal onion extract. Thiosulfinate or derived compounds were shown not to be responsible for the observed changes in the inflammatory response of AGS (stomach adenocarcinoma) cells to tumor necrosis factor alpha (TNFα) when pretreated with model onion juices. A preliminary rat feeding trial indicated that the tearless onions may also play a key role in reducing weight gain.

Concepts: Inflammation, Platelet, Garlic, Allium, Tumor necrosis factor-alpha, Onion, Allicin, Tree onion


6-Gingerol, a major pungent component of ginger (Zingiber officinale Roscoe, Zingiberaceae), has been reported to have antitumor activities. However, the metabolic fate of 6-gingerol and the contribution of its metabolites to the observed activities are still unclear. In the present study, we investigated the biotransformation of 6-gingerol in different cancer cells and in mice, purified and identified the major metabolites from human lung cancer cells, and determined the effects of the major metabolites on the proliferation of human cancer cells. Our results show that 6-gingerol is extensively metabolized in H-1299 human lung cancer cells, CL-13 mouse lung cancer cells, HCT-116 and HT-29 human colon cancer cells, and in mice. The two major metabolites in H-1299 cells were purified and identified as (3R,5S)-6-gingerdiol (M1) and (3S,5S)-6-gingerdiol (M2) based on the analysis of their 1D and 2D NMR data. Both metabolites induced cytotoxicity in cancer cells after 24 h, with M1 having a comparable effect to 6-gingerol in H-1299 cells.

Concepts: Cancer, Metastasis, Lung cancer, Cancer staging, Colorectal cancer, Ginger, Zingiberaceae, Zingiber


Molasses, the main byproduct of sugar production, is a well known source of antioxidants. In this study sugar cane molasses (SCM) and sugar beet molasses (SBM) were investigated for phenolic profile and in vitro antioxidant capacity, and for their protective effect in human HepG2 cells submitted to an oxidative stress. According to its higher phenolic concentration and antioxidant capacity in vitro SCM exhibited an effective protection in cells, comparable or even greater than α-tocopherol. Data herein reported underline the potential health effects of molasses and emphasize the possibility of using by-products for their antioxidant activity. This is particularly important for consumers in developing countries, as it highlights the importance of consuming a low-price commodity, yet very nutritious.

Concepts: Nutrition, Antioxidant, Oxidative stress, Sugar, Fructose, Sugar beet, Molasses, Sucrose


Non-drug varieties of Cannabis sativa L., collectively known as “hemp”, have been an important source of food, fiber and medicince for thousands of years. The ever-increasing demand for vegetables oils has made it essential to characterize additional vegetable oil through innovative uses of its components. The lipid profile showed that linoleic (55%), α-linolenic (16%) and oleic (11%) were the most abundance fatty acids. A yield (1.84-1.92%) of unsaponifiable matter was obtained and the most interesting compounds were: β-sitosterol (1905.00 ± 59.27 mg/ Kg oil), campesterol (505.69 ± 32.04 mg / Kg oil), phytol (167.59 ± 1.81 mg/ Kg oil), cycloartenol (90.55 ± 3.44 mg/ Kg oil) and γ-tocopherol (73.38 ± 2.86 mg/ 100 g oil). This study is an important contribution for Cannabis sativa L. valorization as a source of bioactive compounds contributing to research novel applications for hemp seed oil in the food, pharmaceutical, cosmetic and other non-food industries.

Concepts: Nutrition, Fat, Cannabis, Hemp, Linoleic acid, Cannabis sativa, Hemp oil