Discover the most talked about and latest scientific content & concepts.

Journal: International journal of biometeorology


The choice of the best species to cultivate in semi-arid and arid climates is of fundamental importance, and is determined by many factors, including temperature and rainfall, soil type, water availability for irrigation and crop purposes. Soil or water salinity represents one of the major causes of crop stress. Species of the genus Atriplex are characterized by high biomass productivity, high tolerance to drought and salinity, and high efficiency in use of solar radiation and water. Based on a search of the international literature, the authors outline an agro-climatic zoning model to determine potential production areas in Argentina for Atriplex halimus and Atriplex numularia. Using the agroclimatic limits presented in this work, this model may be applied to any part of the world. When superimposed on the saline areas map, the agroclimatic map shows the suitability of agro-ecological zoning for both species for energy purposes on land unsuitable for food production. This innovative study was based on the implementation of a geographic information system that can be updated by further incorporation of complementary information, with consequent improvement of the original database.

Concepts: Energy, Water, Precipitation, Geographic information system, Seawater, Saline water, Atriplex, Atriplex nummularia


Climate change is affecting high-altitude and high-latitude communities in significant ways. In the short growing season of subarctic habitats, it is essential that the timing and duration of phenological phases match favorable environmental conditions. We explored the time of the first appearance of flowers (first flowering day, FFD) and flowering duration across subarctic species composing different communities, from boreal forest to tundra, along an elevational gradient (600-800 m). The study was conducted on Mount Irony (856 m), North-East Canada (54°90'N, 67°16'W) during summer 2012. First, we quantified phylogenetic signal in FFD at different spatial scales. Second, we used phylogenetic comparative methods to explore the relationship between FFD, flowering duration, and elevation. We found that the phylogenetic signal for FFD was stronger at finer spatial scales and at lower elevations, indicating that closely related species tend to flower at similar times when the local environment is less harsh. The comparatively weaker phylogenetic signal at higher elevation may be indicative of convergent evolution for FFD. Flowering duration was correlated significantly with mean FFD, with later-flowering species having a longer flowering duration, but only at the lowest elevation. Our results indicate significant evolutionary conservatism in responses to phenological cues, but high phenotypic plasticity in flowering times. We suggest that phylogenetic relationships should be considered in the search for predictions and drivers of flowering time in comparative analyses, because species cannot be considered as statistically independent. Further, phenological drivers should be measured at spatial scales such that variation in flowering matches variation in environment.

Concepts: Time, Evolution, Biology, Phylogenetic tree, Phylogenetics, Phylogenetic comparative methods, Elevation, Evolutionary physiology


Accurate measurement of skin surface temperature is essential in both thermo-physiological and clinical applications. However, a literature review of the last two decades of physiological or clinical research revealed an inconsistency or a lack of information on how temperature sensors were attached to the skin surface. The purpose of this study was to systematically compare and quantify the performance of different commercially available temperature sensors and their typical attachment methods, and, secondly, to provide a time-efficient and reliable method for testing any sensor-tape combination. In conclusion, both the sensor type and the attachment method influenced the results of temperature measurements (both its absolute and relative dimensions). The sensor shape and the contact of its sensing area to the surface, as well as the conductance of the tape were the most important parameters to minimise the influence of environmental conditions on surface temperature measurement. These results suggest that temperature sensors and attachment methods for human subject and manikin trials should be selected carefully, with a systematic evaluation of the sensor-tape system under conditions of use, and emphasise the need to report these parameters in publications.

Concepts: Clinical trial, Evaluation, Measurement, Temperature, Skin, Clinical research, Sensor, Absolute zero


The main characteristics of the heat accumulation period and the possible existence of different types of biological response to the environment in different populations of olive through the Mediterranean region have been evaluated. Chilling curves to determine the start date of the heat accumulation period were constructed and evaluated. The results allow us to conclude that the northern olive populations have the greatest heat requirements for the development of their floral buds, and they need a period of time longer than olives in others areas to completely satisfy their biothermic requirements. The olive trees located in the warmest winter areas have a faster transition from endogenous to exogenous inhibition once the peak of chilling is met, and they show more rapid floral development. The lower heat requirements are due to better adaptation to warmer regions. Both the threshold temperature and the peak of flowering date are closely related to latitude. Different types of biological responses of olives to the environment were found. The adaptive capacity shown by the olive tree should be considered as a useful tool with which to study the effects of global climatic change on agro-ecosystems.

Concepts: Climate, Climate change, Fruit, Olive, Mediterranean climate, Olive oil, Mediterranean Basin


Optimum climate conditions for grapevine growth are limited geographically and may be further challenged by a changing climate. Due to the importance of the winemaking sector in Europe, the assessment of future scenarios for European viticulture is of foremost relevance. A 16-member ensemble of model transient experiments (generated by the ENSEMBLES project) under a greenhouse gas emission scenario and for two future periods (2011-2040 and 2041-2070) is used in assessing climate change projections for six viticultural zoning indices. After model data calibration/validation using an observational gridded daily dataset, changes in their ensemble means and inter-annual variability are discussed, also taking into account the model uncertainties. Over southern Europe, the projected warming combined with severe dryness in the growing season is expected to have detrimental impacts on the grapevine development and wine quality, requiring measures to cope with heat and water stress. Furthermore, the expected warming and the maintenance of moderately wet growing seasons over most of the central European winemaking regions may require a selection of new grapevine varieties, as well as an enhancement of pest/disease control. New winemaking regions may arise over northern Europe and high altitude areas, when considering climatic factors only. An enhanced inter-annual variability is also projected over most of Europe. All these future changes pose new challenges for the European winemaking sector.

Concepts: Climate, Climate change, Vitis vinifera, Eastern Europe, Western Europe, Greenhouse gas, Viticulture, Terroir


The incidence of nephrolithiasis is rising worldwide, especially in women and with increasing age. Incidence and prevalence of kidney stones are affected by genetic, nutritional, and environmental factors. The aim of this study is to investigate the link between various meteorological factors (independent variables) and the daily number of visits to the Emergency Department (ED of the S. Croce and Carle Hospital of Cuneo for renal colic (RC) and urinary stones (UC) as the dependent variable over the years 2007-2010.The Poisson generalized regression models (PGAMs) have been used in different progressive ways. The results of PGAMs (stage 1) adjusted for seasonal and calendar factors confirmed a significant correlation (p < 0.03) with the thermal parameter. Evaluation of the dose-response effect [PGAMs combined with distributed lags nonlinear models (DLNMs)-stage 2], expressed in terms of relative risk (RR) and cumulative relative risk (RRC), indicated a relative significant effect up to 15 lag days of lag (RR > 1), with a first peak after 5 days (lag ranges 0-1, 0-3, and 0-5) and a second weak peak observed along the 5-15 lag range days. The estimated RR for females was significant, mainly in the second and fourth age group considered (19-44 and >65 years): RR for total ED visits 1.27, confidence interval (CI) 1.11-1.46 (lag 0-5 days); RR 1.42, CI 1.01-2.01 (lag 0-10 days); and RR 1.35, CI 1.09-1.68 (lag 0-15 days). The research also indicated a moderate involvement of the thermal factor in the onset of RC caused by UC, exclusively in the female sex. Further studies will be necessary to confirm these results.

Concepts: Kidney, Nephrology, Medical statistics, Urinary bladder, Urethra, Uric acid, Kidney stone, Oxalate


Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P < 0.05) higher during the thermal stress. Pearson correlation coefficient analysis revealed that the expression of ATPase Β1, ATPase B2, and ATPase B3 is highly correlated (P < 0.01) with HSP70, representing that the change in the expression pattern of these genes is positive and synergistic. These may provide a foundation for understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in cattle.

Concepts: Protein, Transcription, Spearman's rank correlation coefficient, Correlation and dependence, Membrane protein, Pearson product-moment correlation coefficient, Covariance and correlation, Integral membrane protein


This study was conducted to investigate relationships of self-identified cold tolerance and cold-induced vasodilatation (CIVD) in the finger. Nine males and 34 females participated in the following 2 tests: a CIVD test and a self-reported survey. The CIVD test was conducted 30-min cold-water immersion (3.8 ± 0.3 °C) of the middle finger at an air temperature of 27.9 ± 0.1 °C. The self-reported questionnaire consisted of 28 questions about whole and local body cold and heat tolerances. By a cluster analysis on the survey results, the participants were divided into two groups: high self-identified cold tolerance (HSCT, n = 25) and low self-identified cold tolerance (LSCT, n = 18). LSCT had lower self-identified cold tolerance (P < 0.001), preferred hot thermal stimulation (P = 0.006), and wore heavier clothing during daily life (P < 0.001) than HSCT. LSCT had significantly lower maximal finger temperatures (T max) (P = 0.040), smaller amplitude (P = 0.029), and delayed onset time of CIVD (P = 0.080) when compared to HSCT. Some questions examining the self-identified cold or heat tolerance had relationships with cold tolerance index, T max, and amplitude (P < 0.1). These results indicate that self-identified cold tolerance classified through a standardized survey could be a good index to predict physiological cold tolerance.

Concepts: Temperature, Thermodynamics, Heat, Entropy, Finger, Middle finger, Index finger, Cold


The present study examines onboard thermal microclimatic conditions and thermoregulation of pullets exposed to accidental hypothermia during wet-cold weather transportation conditions, and the effect of rewarming on colonic temperature (CT) of the birds immediately after transportation. A total of 2200 pullets were transportation for 5 h in two separate vehicles during the nighttime. The last 3 h of the transportation period was characterized by heavy rainfall. During the precipitation period, each vehicle was covered one fourth way from the top-roof with a tarpaulin. The onboard thermal conditions inside the vehicles during transportation, which comprised ambient temperature and relative humidity were recorded, while humidity ratio and specific enthalpy were calculated. The CT of the birds was recorded before and after transportation. During transportation, onboard thermal heterogeneity was observed inside the vehicles with higher (p < 0.05) values in the front and center, and lower values recorded at the air inlets at the sides and rear planes. The CT values recorded in birds at the front and center planes were between 42.2 and 42.5 °C, indicative of mild hypothermia; while lower CT values between 28 and 38 °C were recorded at the sides and rear planes, indicative of mild to severe hypothermia. Several hours of gradual rewarming returned the CT to normal range. The result, for the first time, demonstrated the occurrence of accidental hypothermia in transported pullets under tropical conditions and a successful rewarming outcome. In conclusion, transportation of pullets during wet weather at onboard temperature of 18-20 °C induced hypothermia on birds located at the air inlets, which recovered fully after several hours of gradual rewarming.

Concepts: Precipitation, Thermoregulation, Hypothermia, Humidity, Relative humidity, Transport, Heat transfer


The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree (Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.

Concepts: Water, Climate, Arid, Phoenix, Phoenix dactylifera, Rain shadow, Deserts and xeric shrublands, Aridification