Discover the most talked about and latest scientific content & concepts.

Journal: Intensive care medicine experimental


Orthogonal polarized spectral (OPS) and sidestream dark field (SDF) imaging video microscope devices were introduced for observation of the microcirculation but, due to technical limitations, have remained as research tools. Recently, a novel handheld microscope based on incident dark field illumination (IDF) has been introduced for clinical use. The Cytocam-IDF imaging device consists of a pen-like probe incorporating IDF illumination with a set of high-resolution lenses projecting images on to a computer controlled image sensor synchronized with very short pulsed illumination light. This study was performed to validate Cytocam-IDF imaging by comparison to SDF imaging in volunteers.

Concepts: Optics, Light, Microscope, Computer graphics, Microscopy, IMAGE, Image processing, Dark field microscopy


Accurate measurement of pulmonary oxygenation is important for classification of disease severity and quantification of outcomes in clinical studies. Currently, tension-based methods such as P/F ratio are in widespread use, but are known to be less accurate than content-based methods. However, content-based methods require invasive measurements or sophisticated equipment that are rarely used in clinical practice. We devised two new methods to infer shunt fraction from a single arterial blood gas sample: (1) a non-invasive effective shunt (ES) fraction calculated using a rearrangement of the indirect Fick equation, standard constants, and a procedural inversion of the relationship between content and tension and (2) inferred values from a database of outputs from an integrated mathematical model of gas exchange (DB). We compared the predictive validity-the accuracy of predictions of PaO2 following changes in FIO2-of each measure in a retrospective database of 78,159 arterial blood gas (ABG) results from critically ill patients.


Prone position and PEEP can both improve oxygenation and other parameters, but their interaction has not been fully described. Limited data directly compare selection of mechanically “optimal” or “best” PEEP in both supine and prone positions, either with or without changes in chest wall compliance. To compare best PEEP in these varied conditions, we used an experimental ARDS model to compare the mechanical, gas exchange, and hemodynamic response to PEEP titration in supine and prone position with varied abdominal pressure.

Concepts: Respiratory physiology, Abdominal pain, Gas, Supine position, Prone position, Mechanical, Three positions


Mechanical ventilation is common in critically ill patients. This life-saving treatment can cause complications and is also associated with long-term sequelae. Patient-ventilator asynchronies are frequent but underdiagnosed, and they have been associated with worse outcomes.


Intensive care units provide specialised care for critically ill patients around the clock. However, intensive care unit patients have disrupted circadian rhythms. Furthermore, disrupted circadian rhythms are associated with worse outcome. As light is the most powerful ’re-setter' of circadian rhythm, we measured light intensity on intensive care unit. Light intensity was low compared to daylight during the ‘day’; frequent bright light interruptions occurred over ‘night’. These findings are predicted to disrupt circadian rhythms and impair entrainment to external time. Bright lighting during daytime and black out masks at night might help maintain biological rhythms in critically ill patients and improve clinical outcomes.

Concepts: Light, Intensive care medicine, Circadian rhythm, Chronobiology, Circadian rhythms, Entrainment


Mechanical ventilation and hyperoxia have the potential to independently promote lung injury and inflammation. Our purpose was to study both time- and dose-dependent effects of supplemental oxygen in an experimental model of mechanically ventilated mice.

Concepts: Inflammation, Oxygen, Pulmonology, Asthma, Pneumonia, Anti-inflammatory, Sepsis, Emergency medical services


Mechanical power is a summary variable including all the components which can possibly cause VILI (pressures, volume, flow, respiratory rate). Since the complexity of its mathematical computation is one of the major factors that delay its clinical use, we propose here a simple and easy to remember equation to estimate mechanical power under volume-controlled ventilation: [Formula: see text] where the mechanical power is expressed in Joules/minute, the minute ventilation (VE) in liters/minute, the inspiratory flow (F) in liters/minute, and peak pressure and positive end-expiratory pressure (PEEP) in centimeter of water. All the components of this equation are continuously displayed by any ventilator under volume-controlled ventilation without the need for clinician intervention. To test the accuracy of this new equation, we compared it with the reference formula of mechanical power that we proposed for volume-controlled ventilation in the past. The comparisons were made in a cohort of mechanically ventilated pigs (485 observations) and in a cohort of ICU patients (265 observations).


Catheter suctioning of respiratory secretions in intubated subjects is limited to the proximal airway and associated with traumatic lesions to the mucosa and poor tolerance. “Mechanical insufflation-exsufflation” exerts positive pressure, followed by an abrupt drop to negative pressure. Potential advantages of this technique are aspiration of distal airway secretions, avoiding trauma, and improving tolerance.

Concepts: Vacuum


Plasma-Lyte is a balanced, crystalloid intravenous fluid which has been shown to avoid the hyperchloremic metabolic acidosis associated with 0.9% sodium chloride. Data on physical, pH and chemical compatibility with other medicines are essential.


Mechanical ventilation is a life-saving therapy in patients with acute respiratory distress syndrome (ARDS). However, mechanical ventilation itself causes severe co-morbidities in that it can trigger ventilator-associated lung injury (VALI) in humans or ventilator-induced lung injury (VILI) in experimental animal models. Therefore, optimization of ventilation strategies is paramount for the effective therapy of critical care patients. A major problem in the stratification of critical care patients for personalized ventilation settings, but even more so for our overall understanding of VILI, lies in our limited insight into the effects of mechanical ventilation at the actual site of injury, i.e., the alveolar unit. Unfortunately, global lung mechanics provide for a poor surrogate of alveolar dynamics and methods for the in-depth analysis of alveolar dynamics on the level of individual alveoli are sparse and afflicted by important limitations. With alveolar dynamics in the intact lung remaining largely a “black box,” our insight into the mechanisms of VALI and VILI and the effectiveness of optimized ventilation strategies is confined to indirect parameters and endpoints of lung injury and mortality.In the present review, we discuss emerging concepts of alveolar dynamics including alveolar expansion/contraction, stability/instability, and opening/collapse. Many of these concepts remain still controversial, in part due to limitations of the different methodologies applied. We therefore preface our review with an overview of existing technologies and approaches for the analysis of alveolar dynamics, highlighting their individual strengths and limitations which may provide for a better appreciation of the sometimes diverging findings and interpretations. Joint efforts combining key technologies in identical models to overcome the limitations inherent to individual methodologies are needed not only to provide conclusive insights into lung physiology and alveolar dynamics, but ultimately to guide critical care patient therapy.