Discover the most talked about and latest scientific content & concepts.

Journal: Insects


The 24-h day involves cycles in environmental factors that impact organismal fitness. This is thought to select for organisms to regulate their temporal biology accordingly, through circadian and diel rhythms. In addition to rhythms in abiotic factors (such as light and temperature), biotic factors, including ecological interactions, also follow daily cycles. How daily rhythms shape, and are shaped by, interactions between organisms is poorly understood. Here, we review an emerging area, namely the causes and consequences of daily rhythms in the interactions between vectors, their hosts and the parasites they transmit. We focus on mosquitoes, malaria parasites and vertebrate hosts, because this system offers the opportunity to integrate from genetic and molecular mechanisms to population dynamics and because disrupting rhythms offers a novel avenue for disease control.

Concepts: Gene, Genetics, Evolution, Biology, Malaria, Ecology, Biotic component, Abiotic component


We conducted a laboratory study to determine the impact of ground-applied termiticides on the above-ground foraging behavior of Coptotermes formosanus. Two concentrations (1 and 10 ppm) each of three termiticides, viz. fipronil, imidacloprid and chlorantraniliprole, were tested. After one month post-treatment (fipronil 10 ppm was run for 12 days only and all other treatments were run for one month), fipronil had the lowest percentage of survival (3%-4%) at both concentrations. Termite survival ranged from 31% to 40% in the case of imidacloprid treatments and 10 ppm chlorantraniliprole. However, 1 ppm chlorantraniliprole did not cause significant mortality compared to the controls. Foraging on the bottom substrate was evident in all replicates for all chemicals initially. However, a portion of the foraging population avoided the ground treatment toxicants after several days of bottom foraging. Only the slower-acting non-repellents created this repellent barrier, causing avoidance behavior that was most likely due to dead termites and fungus buildup on the treated bottom substrate. Fipronil appeared more toxic and faster acting at the concentrations tested, thus limiting this repellent effect. Suggestions by the pest control industry in Louisiana that some non-repellents can create a repellent barrier stranding live termites above ground are supported by this laboratory study.

Concepts: Cellulose, Cockroach, Imidacloprid, Termite, Termites, Invasive animal species, Formosan subterranean termite, Fipronil


The Asian citrus psyllid, Diaphorina citri Kuwayama, is the insect vector of the pathogen causing huanglongbing. We selected three botanical oils to evaluate behavioral activity against D. citri. In laboratory olfactometer assays, fir oil was repellent to D. citri females, while litsea and citronella oils elicited no response from D. citri females. In choice settling experiments, D. citri settled almost completely on control plants rather than on plants treated with fir oil at a 9.5 mg/day release rate. Therefore, we conducted field trials to determine if fir oil reduced D. citri densities in citrus groves. We found no repellency of D. citri from sweet orange resets that were treated with fir oil dispensers releasing 10.4 g/day/tree as compared with control plots. However, we found a two-week decrease in populations of D. citri as compared with controls when the deployment rate of these dispensers was doubled. Our results suggest that treatment of citrus with fir oil may have limited activity as a stand-alone management tool for D. citri and would require integration with other management practices.

Concepts: Water, Citrus, Liquid, Fruit, Orange, Hemiptera, Essential oil, Insect repellent


The increased urbanization of a growing global population makes imperative the development of sustainable integrated pest management (IPM) strategies for urban pest control. This emphasizes pests that are closely associated with the health and wellbeing of humans and domesticated animals. Concurrently there are regulatory requirements enforced to minimize inadvertent exposures to insecticides in the urban environment. Development of insecticide resistance management (IRM) strategies in urban ecosystems involves understanding the status and mechanisms of insecticide resistance and reducing insecticide selection pressure by combining multiple chemical and non-chemical approaches. In this review, we will focus on the commonly used insecticides and molecular and physiological mechanisms underlying insecticide resistance in six major urban insect pests: house fly, German cockroach, mosquitoes, red flour beetle, bed bugs and head louse. We will also discuss several strategies that may prove promising for future urban IPM programs.

Concepts: Agriculture, Insect, Urban area, Pesticide, Sustainability, Pesticide application, Deltamethrin, Pest control


Fleas are the major ectoparasite of cats, dogs, and rodents worldwide and potential vectors of animal diseases. In the past two decades the majority of new control treatments have been either topically applied or orally administered to the host. Most reports concerning the development of insecticide resistance deal with the cat flea, Ctenocephalides felis felis. Historically, insecticide resistance has developed to many of the insecticides used to control fleas in the environment including carbamates, organophosphates, and pyrethroids. Product failures have been reported with some of the new topical treatments, but actual resistance has not yet been demonstrated. Failures have often been attributed to operational factors such as failure to adequately treat the pet and follow label directions. With the addition of so many new chemistries additional monitoring of flea populations is needed.

Concepts: Flea, Cat, Insecticide, DDT, Cat health, Cat flea, Pulicosis, Fleas


The taphonomy of carcasses submerged in the ocean is little understood, yet it is extremely important ecologically and forensically. The objectives of this study were to determine the fate of pig carcasses as human proxies in the Strait of Georgia at 170 m in spring and fall. Using Ocean Networks Canada’s Victoria Experimental Network Underseas (VENUS) observatory, two carcasses per season were placed under a cabled platform hosting a webcam and instruments measuring water chemistry. Two minutes of video were recorded every 15 min. In spring, Lyssianassidae amphipods and Pandalus platyceros were immediately attracted and fed on the carcasses, the amphipods removed the bulk of the soft tissue from the inside whilst the shrimp shredded the skin and tissue. The carcasses were skeletonized on Days 8 and 10. In fall, Metacarcinus magister was the major scavenger, removing most of the soft tissue from one carcass. Amphipods did not arrive in large numbers until Day 15, when they skeletonized the scavenged carcass by Day 22 and the less scavenged carcass by Day 24. Amphipods remained for some days after skeletonization. This skeletonization was very different from previous experiments at different depths and habitats. Such data are very valuable for predicting preservation, planning recoveries, and managing family expectations.

Concepts: Water, Ecology, Skin, Season, British Columbia, Decomposition, Strait of Georgia, Hyena


Many insects are threatened with extinction, which in the case of pollinating insects could lead to declining pollination services and reduced ecosystem biodiversity. This necessitates rethinking how we deal with nature in general. Schools are ideal places in which to instill a willingness to behave in an environmentally-friendly way. Whereas scientific studies and school textbooks stress the importance of honeybees as pollinators, the role of bumblebees is either underestimated or neglected. The aim of this study was to provide information concerning student knowledge and attitudes, which are important factors of an individual’s environmental awareness. A questionnaire with closed and open questions was developed, which also included drawing and species identification tasks. We surveyed 870 German secondary school students between 9 and 20 years of age. Our results indicate limited knowledge of bumblebees by students of all grades. Knowledge increased with higher grades but only with a small effect size. The attitude of students towards bumblebees was generally positive; however, this positivity declined with increasing grade of the participants. This correlation also had a small effect size. Our results are discussed, with a particular focus on future educational demand.

Concepts: Ecology, Education, High school, Pollination, Secondary education, Pollinator decline, Bumblebee, Pollinator


The temperature of the environment is one of the most important abiotic factors affecting the life of insects. As poikilotherms, their body temperature is not constant, and they rely on various strategies to minimize the risk of thermal stress. They have been thus able to colonize a large spectrum of habitats. Mosquitoes, such as Ae. aegypti and Ae. albopictus, vector many pathogens, including dengue, chikungunya, and Zika viruses. The spread of these diseases has become a major global health concern, and it is predicted that climate change will affect the mosquitoes' distribution, which will allow these insects to bring new pathogens to naïve populations. We synthesize here the current knowledge on the impact of temperature on the mosquito flight activity and host-seeking behavior (1); ecology and dispersion (2); as well as its potential effect on the pathogens themselves and how climate can affect the transmission of some of these pathogens (3).


The cat flea Ctenocephalides felis felis (Bouché) is the most important ectoparasite of domestic cats and dogs worldwide. It has been two decades since the last comprehensive review concerning the biology and ecology of C. f. felis and its management. Since then there have been major advances in our understanding of the diseases associated with C. f. felis and their implications for humans and their pets. Two rickettsial diseases, flea-borne spotted fever and murine typhus, have been identified in domestic animal populations and cat fleas. Cat fleas are the primary vector of Bartonella henselae (cat scratch fever) with the spread of the bacteria when flea feces are scratched in to bites or wounds. Flea allergic dermatitis (FAD) common in dogs and cats has been successfully treated and tapeworm infestations prevented with a number of new products being used to control fleas. There has been a continuous development of new products with novel chemistries that have focused on increased convenience and the control of fleas and other arthropod ectoparasites. The possibility of feral animals serving as potential reservoirs for flea infestations has taken on additional importance because of the lack of effective environmental controls in recent years. Physiological insecticide resistance in C. f. felis continues to be of concern, especially because pyrethroid resistance now appears to be more widespread. In spite of their broad use since 1994, there is little evidence that resistance has developed to many of the on-animal or oral treatments such as fipronil, imidacloprid or lufenuron. Reports of the perceived lack of performance of some of the new on-animal therapies have been attributed to compliance issues and their misuse. Consequentially, there is a continuing need for consumer awareness of products registered for cats and dogs and their safety.

Concepts: Flea, Cat, Domestication, Cat health, Cat flea, Pulicosis, Fleas, Veterinary entomology


Understanding the interactions between pathogens sharing the same host can be complicated for holometabolous animals when larval and adult stages are exposed to distinct pathogens. In medically important insect vectors, the effect of pathogen exposure at the larval stage may influence susceptibility to human pathogens at the adult stage. We addressed this hypothesis in the mosquito Aedes aegypti, a major vector of arthropod-borne viruses (arboviruses), such as the dengue virus (DENV) and the chikungunya virus (CHIKV). We experimentally assessed the consequences of sub-lethal exposure to the bacterial pathogen Bacillus thuringiensis subsp. israelensis (Bti), during larval development, on arbovirus susceptibility at the adult stage in three Ae. aegypti strains that differ in their genetic resistance to Bti. We found that larval exposure to Bti significantly increased DENV susceptibility, but not CHIKV susceptibility, in the Bti-resistant strains. However, there was no major difference in the baseline arbovirus susceptibility between the Bti-resistant strains and their Bti-susceptible parental strain. Although the generality of our results remains to be tested with additional arbovirus strains, this study supports the idea that the outcome of an infection by a pathogen depends on other pathogens sharing the same host even when they do not affect the same life stage of the host. Our findings may also have implications for Bti as a mosquito biocontrol agent, indicating that the sub-optimal Bti efficacy may have counter-productive effects by increasing vector competence, at least for some combinations of arbovirus and mosquito strains.