SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Inorganic chemistry

29

Insight into the solid-state chemistry of pure technetium-99 ((99)Tc) oxides is required in the development of a robust immobilization and disposal system for nuclear waste stemming from the radiopharmaceutical industry, from the production of nuclear weapons, and from spent nuclear fuel. However, because of its radiotoxicity and the subsequent requirement of special facilities and handling procedures for research, only a few studies have been completed, many of which are over 20 years old. In this study, we report the synthesis of pure alkali pertechnetates (sodium, potassium, rubidium, and cesium) and analysis of these compounds by Raman spectroscopy, X-ray absorption spectroscopy (XANES and EXAFS), solid-state nuclear magnetic resonance (static and magic angle spinning), and neutron diffraction. The structures and spectral signatures of these compounds will aid in refining the understanding of (99)Tc incorporation into and release from nuclear waste glasses. NaTcO4 shows aspects of the relatively higher electronegativity of the Na atom, resulting in large distortions of the pertechnetate tetrahedron and deshielding of the (99)Tc nucleus relative to the aqueous TcO4(-). At the other extreme, the large Cs and Rb atoms interact only weakly with the pertechnetate, have closer to perfect tetrahedral symmetry at the Tc atom, and have very similar vibrational spectra, even though the crystal structure of CsTcO4 is orthorhombic while that of RbTcO4 is tetragonal. Further trends are observed in the cell volume and quadrupolar coupling constant.

Concepts: Spectroscopy, Chemistry, Atom, Nuclear magnetic resonance, Magnetic resonance imaging, Neutron, Nuclear fission, Caesium

28

Nanoscopic uranyl coordination cages have been prepared by a facile route involving self-assembly via temperature and solvent-driven, in situ ligand synthesis. The synthesis of hydrogen arsenate and pyroarsonate ligands in situ enhances flexibility, which is an important factor in producing these compounds.

Concepts: Ammonia, Chemical reaction, Coordination complex, Ligand, Carbon monoxide, Inorganic chemistry, In situ, Coordination number

28

Aggregation of amyloid-β (Aβ) by self-assembly into oligomers or amyloids is a central event in Alzheimer’s disease. Coordination of transition-metal ions, mainly copper and zinc, to Aβ occurs in vivo and modulates the aggregation process. A survey of the impact of Cu(II) and Zn(II) on the aggregation of Aβ reveals some general trends: (i) Zn(II) and Cu(II) at high micromolar concentrations and/or in a large superstoichiometric ratio compared to Aβ have a tendency to promote amorphous aggregations (precipitation) over the ordered formation of fibrillar amyloids by self-assembly; (ii) metal ions affect the kinetics of Aβ aggregations, with the most significant impact on the nucleation phase; (iii) the impact is metal-specific; (iv) Cu(II) and Zn(II) affect the concentrations and/or the types of aggregation intermediates formed; (v) the binding of metal ions changes both the structure and the charge of Aβ. The decrease in the overall charge at physiological pH increases the overall driving force for aggregation but may favor more precipitation over fibrillation, whereas the induced structural changes seem more relevant for the amyloid formation.

Concepts: Hydrogen, Peptide, Aluminium, Metal, Copper, Solid, Silver, Beta amyloid

28

Zn(II) complexes of the following new, fluorine-containing, benzothiazole-derived ligands have been synthesized and characterized crystallographically: 2-(3,3,3-trifluoro-2-oxopropyl)benzothiazole (3), 4,5,6,7-tetrafluoro-2-(3,3,3-trifluoro-2-oxopropyl)benzothiazole (4), 4,5,6,7-tetrafluoro-2-(2-hydroxyphenyl)benzothiazole (12), 2-(3,4,5,6-tetrafluoro-2-hydroxyphenyl)-4,5,6,7-tetrafluorobenzothiazole (13), and 2-(3,4,5,6-tetrafluoro-2-hydroxyphenyl)benzothiazole (16); the Cu(II) complex of ligand 4 is also reported. These are analogs of the important photo- and electroluminescent material [Zn(BTZ)(2)](2), where H-BTZ = 2-(2-hydroxyphenyl)benzothiazole. DFT calculations indicate that HOMO and LUMO energy levels in these materials are substantially lowered by fluorination. The fluorinated ZnL(2) complexes are mononuclear (in contrast to the dinuclear, nonfluorinated material [Zn(BTZ)(2)](2)). They easily sublime and show broad visible photoluminescence. A common crystallographic feature is the existence of pairs of fluorinated ZnL(2) molecules related by inversion centers, with their π systems facing one another.

Concepts: Following, Benzene, Ligand, Complex, Luminescence, Material, HOMO/LUMO, Electroluminescence

28

Despite the extensive interest in structurally explaining the photophysics of DNA-bound [Ru(phen)(2)dppz](2+) and [Ru(bpy)(2)dppz](2+), the origin of the two distinct emission lifetimes of the pure enantiomers when intercalated into DNA has remained elusive. In this report, we have combined a photophysical characterization with a detailed isothermal titration calorimetry study to investigate the binding of the pure Δ and Λ enantiomers of both complexes with [poly(dAdT)](2). We find that a binding model with two different binding geometries, proposed to be symmetric and canted intercalation from the minor groove, as recently reported in high-resolution X-ray structures, is required to appropriately explain the data. By assigning the long emission lifetime to the canted binding geometry, we can simultaneously fit both calorimetric data and the binding-density-dependent changes in the relative abundance of the two emission lifetimes using the same binding model. We find that all complex-complex interactions are slightly unfavorable for Δ-[Ru(bpy)(2)dppz](2+), whereas interactions involving a complex canted away from a neighbor are favorable for the other three complexes. We also conclude that Δ-[Ru(bpy)(2)dppz](2+) preferably binds isolated, Δ-[Ru(phen)(2)dppz](2+) preferably binds as duplets of canted complexes, and that all complexes are reluctant to form longer consecutive sequences than triplets. We propose that this is due to an interplay of repulsive complex-complex and attractive complex-DNA interactions modulated by allosteric DNA conformation changes that are largely affected by the nature of the ancillary ligands.

Concepts: DNA, Structure, Geometry, Complex, Explanation, Proposal, Origin, Intercalation

28

Reaction of L(0)NiBr(2) with 2 equiv of NaH yielded the Ni(II) hydride complex [(L(•-))Ni(μ-H)(2)Ni(L(•-))] (1) (L = [(2,6-iPr(2)C(6)H(3))NC(Me)](2); L(0) represents the neutral ligand, L(•-) is its radical-anionic form, and L(2-) denotes the dianion) in good yield. Stepwise reduction of complex 1 led to a series of nickel hydrides. Reduction of 1 with 1 equiv of sodium metal afforded a singly reduced species [Na(DME)(3)][(L(•-))Ni(μ-H)(2)Ni(L(•-))] (2a) (DME = 1,2-dimethoxyethane), which contains a mixed-valent core [Ni(μ-H)(2)Ni](+). With 2 equiv of Na a doubly reduced species [Na(DME)](2)[L(2-)Ni(μ-H)(2)NiL(2-)] (3a) was obtained, in which each monoanion (L(•-)) in the precursor 1 has been reduced to L(2-). By using potassium as the reducing agent, two analogous species [K(DME)(4)][(L(•-))Ni(μ-H)(2)Ni(L(•-))] (2b) and [K(DME)](2)[L(2-)Ni(μ-H)(2)NiL(2-)] (3b) were obtained. Further treatment of 3b with 2 equiv of K led to a trinuclear complex [K(DME)(THF)](2)K(2)[L(2-)Ni(μ-H)(2)Ni(μ-H)(2)NiL(2-)] (4), which contains one Ni(II) and two Ni(I) centers with a triplet ground state. When 1 and 3a were warmed in toluene or benzene, respectively, three reverse-sandwich dinickel complexes, [(L(•-))Ni(μ-η(3):η(3)-C(7)H(8))Ni(L(•-))] (5) and [Na(DME)](2)[L(2-)Ni(μ-η(3):η(3)-C(6)H(5)R)NiL(2-)] (6: R = CH(3); 7: R = H), were isolated. Reaction of 1 with Me(3)SiN(3) gave the N(3)-bridged complex [(L(•-))Ni(μ-η(1)-N(3))(2)Ni(L(•-))] (8). The crystal structures of complexes 1-8 have been determined by X-ray diffraction, and their electronic structures have been fully studied by EPR/NMR spectroscopy.

Concepts: Hydrogen, Redox, Oxidizing agent, Ion, Hydride, Sodium, Reducing agent, Sodium hydride

28

Reactions of [8,8,8-(H)(PPh(3))(2)-9-(Py)-nido-8,7-RhSB(9)H(9)] (1), [1,1-(PPh(3))(2)-3-(Py)-closo-1,2-RhSB(9)H(8)] (2), and [1,1-(CO)(PPh(3))-3-(Py)-closo-1,2-RhSB(9)H(8)] (4), where Py = Pyridine, with HCl to give the Cl-ligated clusters, [8,8-(Cl)(PPh(3))-9-(Py)-nido-8,7-RhSB(9)H(9)] (3) and [8,8,8-(Cl)(CO)(PPh(3))-9-(Py)-nido-8,7-RhSB(9)H(8)] (5), have recently demonstrated the remarkable nido-to-closo redox flexibility and bifunctional character of this class of 11-vertex rhodathiaboranes. To get a sense of the scope of this chemistry, we report here the reactions of PR(3)-ligated analogues, [8,8,8-(H)(PR(3))(2)-9-(Py)-nido-8,7-RhSB(9)H(9)], where PR(3) = PMePh(2) (6), or PPh(3) and PMe(3) (7); and [1,1-(PR(3))(2)-3-(Py)-closo-1,2-RhSB(9)H(8)], where PR(3) = PPh(3) and PMe(3) (8), PMe(3) (9) or PMe(2)Ph (10), with HCl to give Cl-ligated clusters. The results demonstrate that in contrast to the PPh(3)-ligated compounds, 1, 2, and 3, the reactions with 6-10 are less selective, giving rise to the formation of mixtures that contain monophosphine species, [8,8-(Cl)(PR(3))-9-(Py)-nido-8,7-RhSB(9)H(9)], where PR(3) = PMe(3) (11), PMe(2)Ph (12), or PMePh(2) (15), and bis-ligated derivatives, [8,8,8-(Cl)(PR(3))(2)-9-(Py)-nido-8,7-RhSB(9)H(9)], where PR(3) = PMe(3) (13) or PMe(2)Ph (14). The {RhCl(PR(3))}-containing compounds, 3, 11, 12, and 15, are formally unsaturated 12 skeletal electron pair (sep) clusters with nido-structures. Density functional theory (DFT) calculations demonstrate that the nido-structure is more stable than the predicted closo-isomers. In addition, studies have been carried out that involve the reactivity of 3 with Lewis bases. Thus, it is reported that 3 interacts with MeCN in solution, and it reacts with CO and pyridine to give the corresponding Rh-L adducts, [8,8,8-(Cl)(L)(PPh(3))-9-(Py)-nido-8,7-RhSB(9)H(9)], where L = CO (5) or Py (20). On the other hand, the treatment of 3 and 5 with Proton Sponge (PS) promotes the abstraction of HCl, as [PSH]Cl, from the nido-clusters, and the regeneration of the parent closo-species, completing two new stoichiometric cycles that are driven by Brønsted acid/base chemistry.

Concepts: Chemical reaction, Hydrogen, Computational chemistry, Density functional theory, Quantum chemistry, Demonstration, Chemical compound, Bases

28

A new series of materials of the glaserite family with the general formula K(3)RE(VO(4))(2)(RE = Sc, Y, Dy, Ho, Er, Tm, Yb, and Lu) have been hydrothermally synthesized using 10 M K(2)CO(3) at 560 °C and characterized by single crystal X-ray diffraction (XRD), powder XRD, differential thermal analysis/thermogravimetric analysis (DTA/TGA), energy-dispersion X-ray (EDX), Raman, infrared, and absorption spectroscopy. All the compounds crystallize in the trigonal P3̅m1 space group (No. 164), and their structures contain VO(4) tetrahedra, REO(6) octahedra, and two different K(1)O(10) and K(2)O(12) polyhedra. The spectroscopic properties of Nd(3+), Yb(3+), or Er(3+) doped K(3)RE(VO(4))(2) (RE = Y or Lu) are also reported, and the results obtained show that these compounds have promising potential as new laser host materials.

Concepts: Spectroscopy, Diffraction, Crystallography, Electromagnetic radiation, Laser, Absorption spectroscopy, Infrared spectroscopy, Infrared

28

Iron 2,6-diacetylpyridinebis(semioxamazide) (Fe(dapsox)) is a heptacoordinate pentagonal bipyramidal, functional mimic of iron-dependent superoxide dismutase that has been well-characterized on the basis of kinetics and mechanistic studies; however, prior to our studies, its electronic structure had yet to be examined. This paper details our initial characterization of Fe(dapsox) in both its reduced and oxidized states, by electronic absorption (Abs) and low-temperature magnetic circular dichroism spectroscopies. Density functional theory (DFT) geometry optimizations have yielded models in good agreement with the published crystal structures. Time-dependent DFT and INDO/S-CI calculations performed on these models successfully reproduce the experimental Abs spectra and identify intense, low-energy transitions in the reduced complex (Fe(II)(H(2)dapsox)) as metal-to-ligand charge transfer transitions, suggesting the presence of π-backbonding in this complex. This backbonding, along, with the proton uptake accompanying metal ion reduction, provides a compelling mechanism by which the metal-centered redox potential is correctly tuned for catalytic superoxide disproportionation.

Concepts: Iron, Hydrogen, Redox, Electrochemistry, Carbon, Aluminium, Superoxide, Manganese

28

New carbide Zintl phases Ca(11)E(3)C(8) (E = Sn, Pb) were grown from reactions of carbon and heavy tetrelides in Ca/Li flux. They form with a new structure type in space group P2(1)/c (a = 13.1877(9)Å, b = 10.6915(7)Å, c = 14.2148(9)Å, β = 105.649(1)°, and R(1) = 0.019 for the Ca(11)Sn(3)C(8) analog). The structure features isolated E(4-) anions as well as acetylide (C(2)(2-)) and allenylide (C(3)(4-)) anions; the vibrational modes of the carbide anions are observed in the Raman spectrum. The charge-balanced nature of these phases is confirmed by DOS calculations which indicate that the tin analog has a small band gap (E(g) < 0.1 eV) and the lead analog has a pseudogap at the Fermi level. Reactions of these compounds with water produce acetylene and allene.

Concepts: Spectroscopy, Condensed matter physics, Atom, Semiconductor, Lead, Raman scattering, Enrico Fermi, Molecular vibration