SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Human molecular genetics

220

Roughly one in three individuals is highly susceptible to motion sickness and yet the underlying causes of this condition are not well understood. Despite high heritability, no associated genetic factors have been discovered. Here, we conducted the first genome-wide association study on motion sickness in 80,494 individuals from the 23andMe database who were surveyed about car sickness. Thirty-five single-nucleotide polymorphisms (SNPs) were associated with motion sickness at a genome-wide-significant level (p<5×10-8). Many of these SNPs are near genes involved in balance, and eye, ear, and cranial development (e.g., PVRL3, TSHZ1, MUTED, HOXB3, HOXD3). Other SNPs may affect motion sickness through nearby genes with roles in the nervous system, glucose homeostasis, or hypoxia. We show that several of these SNPs display sex-specific effects, with up to three times stronger effects in women. We searched for comorbid phenotypes with motion sickness, confirming associations with known comorbidities including migraines, postoperative nausea and vomiting (PONV), vertigo, and morning sickness, and observing new associations with altitude sickness and many gastrointestinal conditions. We also show that two of these related phenotypes (PONV and migraines) share underlying genetic factors with motion sickness. These results point to the importance of the nervous system in motion sickness and suggest a role for glucose levels in motion-induced nausea and vomiting, a finding that may provide insight into other nausea-related phenotypes like PONV. They also highlight personal characteristics (e.g., being a poor sleeper) that correlate with motion sickness, findings that could help identify risk factors or treatments.

Concepts: Central nervous system, DNA, Genetics, Bioinformatics, Vomiting, Nausea, Metoclopramide, Postoperative nausea and vomiting

174

Identification of a systemically acting and universal small molecule therapy for Duchenne muscular dystrophy would be an enormous advance for this condition. Based on evidence gained from studies on mouse genetic models we have identified tyrosine phosphorylation and degradation of β-dystroglycan as a key event in the aetiology of Duchenne muscular dystrophy. Thus preventing tyrosine phosphorylation and degradation of β-dystroglycan presents itself as a potential therapeutic strategy. Using the dystrophic sapje zebrafish we have investigated the use of tyrosine kinase and other inhibitors to treat the dystrophic symptoms in this model of Duchenne muscular dystrophy. Dasatinib, a potent and specific Src tyrosine kinase inhibitor was found to decrease the levels of β-dystroglycan phosphorylation on tyrosine and increase the relative levels of non-phosphorylated β-dystroglycan in sapje zebrafish. Furthermore, dasatinib treatment resulted in the improved physical appearance of the sapje zebrafish musculature and increased swimming ability as measured by both duration and distance of swimming dasatinib treated fish compared to control animals. These data suggest great promise for pharmacological agents that prevent the phosphorylation of β-dystroglycan on tyrosine and subsequent steps in the degradation pathway as therapeutic targets for the treatment of Duchenne muscular dystrophy.

Concepts: Signal transduction, Protein kinase, Phosphorylation, Enzyme inhibitor, Electromyography, Muscular dystrophy, Duchenne muscular dystrophy, Morpholino

174

Friedreich’s ataxia (FRDA) is the most common hereditary ataxia, affecting ∼3 in 100 000 individuals in Caucasian populations. It is caused by intronic GAA repeat expansions that hinder the expression of the FXN gene, resulting in defective levels of the mitochondrial protein frataxin. Sensory neurons in dorsal root ganglia (DRG) are particularly damaged by frataxin deficiency. There is no specific therapy for FRDA. Here, we show that frataxin levels can be upregulated by interferon gamma (IFNγ) in a variety of cell types, including primary cells derived from FRDA patients. IFNγ appears to act largely through a transcriptional mechanism on the FXN gene. Importantly, in vivo treatment with IFNγ increases frataxin expression in DRG neurons, prevents their pathological changes and ameliorates the sensorimotor performance in FRDA mice. These results disclose new roles for IFNγ in cellular metabolism and have direct implications for the treatment of FRDA.

Concepts: DNA, Protein, Gene, Gene expression, Cell, Bacteria, RNA, Friedreich's ataxia

173

Neuronal ceroid lipofuscinoses (NCLs) comprise a heterogeneous group of metabolic storage diseases that present with the accumulation of autofluorescent lipopigment, neurodegeneration and premature death. Nine genes have been thus far identified as the cause of different types of NCL, with ages at onset ranging from around birth to adult, although the underlying etiology of the disease still remains elusive. We present a family with typical NCL pathology in which we performed exome sequencing and identified a single homozygous mutation in ATP13A2 that fully segregates with disease within the family. Mutations in ATP13A2 are a known cause of Kufor-Rakeb syndrome (KRS), a rare parkinsonian phenotype with juvenile onset. These data show that NCL and KRS may share etiological features and implicate the lysosomal pathway in Parkinson’s disease.

Concepts: DNA, Cancer, Evolution, Death, Parkinson's disease, Parkinsonism, Neuronal ceroid lipofuscinosis, Batten disease

171

Autoimmune thyroid disease (AITD), including Graves' disease (GD) and Hashimoto’s thyroiditis (HT), is one of the most common of the immune-mediated diseases. To further investigate the genetic determinants of AITD, we conducted an association study using a custom-made single-nucleotide polymorphism (SNP) array, the ImmunoChip. The SNP array contains all known and genotype-able SNPs across 186 distinct susceptibility loci associated with one or more immune-mediated diseases. After stringent quality control, we analysed 103 875 common SNPs (minor allele frequency >0.05) in 2285 GD and 462 HT patients and 9364 controls. We found evidence for seven new AITD risk loci (P < 1.12 × 10(-6); a permutation test derived significance threshold), five at locations previously associated and two at locations awaiting confirmation, with other immune-mediated diseases.

Concepts: Bioinformatics, Single-nucleotide polymorphism, Thyroid disease, Genetic genealogy, Hashimoto's thyroiditis, Hyperthyroidism, Thyroid, Minor allele frequency

170

Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.

Concepts: DNA, Gene, Genetics, Allele, Genome-wide association study, Epilepsy, Myoclonus, Juvenile myoclonic epilepsy

170

Hereditary sensory and autonomic neuropathies (HSANs) encompass a group of genetically inherited disorders characterized by sensory and autonomic dysfunctions. Familial dysautonomia (FD), also known as HSAN type III, is an autosomal recessive disorder that affects 1/3600 live births in the Ashkenazi Jewish population. The disease is caused by abnormal development and progressive degeneration of the sensory and autonomic nervous systems and is inevitably fatal, with only 50% of patients reaching the age of 40. FD is caused by a mutation in intron 20 of the Ikbkap gene that results in severe reduction in the expression of its encoded protein, inhibitor of kappaB kinase complex-associated protein (IKAP). Although the mutation that causes FD was identified in 2001, so far there is no appropriate animal model that recapitulates the disorder. Here, we report the generation and characterization of the first mouse models for FD that recapitulate the molecular and pathological features of the disease. Important for therapeutic interventions is also our finding that a slight increase in IKAP levels is enough to ameliorate the phenotype and increase the life span. Understanding the mechanisms underlying FD will provide insights for potential new therapeutic interventions not only for FD, but also for other peripheral neuropathies.

Concepts: Nervous system, DNA, Gene, Genetics, Gregor Mendel, Neurological disorders, Familial dysautonomia, Hereditary sensory and autonomic neuropathy

169

The GUCY2D gene encodes retinal membrane guanylyl cyclase (RetGC1), a key component of the phototransduction machinery in photoreceptors. Mutations in GUCY2D cause Leber congenital amaurosis type 1 (LCA1), an autosomal recessive human retinal blinding disease. The effects of RetGC1 deficiency on human rod and cone photoreceptor structure and function are currently unknown. To move LCA1 closer to clinical trials, we characterized a cohort of patients (ages 6 mos - 37 yrs) with GUCY2D mutations. In vivo analyses of retinal architecture indicated intact rod photoreceptors in all patients but abnormalities in foveal cones. By functional phenotype, there were patients with and those without detectable cone vision. Rod vision could be retained and did not correlate with extent of cone vision or age. In patients without cone vision, rod vision functioned unsaturated under bright ambient illumination. In vitro analyses of the mutant alleles showed that in addition to the major truncation of the essential catalytic domain in RetGC1, some missense mutations in LCA1 patients result in a severe loss of function by inactivating its catalytic activity and/or ability to interact with the activator proteins, GCAPs. The differences in rod sensitivities among patients were not explained by the biochemical properties of the mutants. However, the RetGC1 mutant alleles with remaining biochemical activity in vitro were associated with retained cone vision in vivo. We postulate a relationship between the level of RetGC1 activity and the degree of cone vision abnormality, and argue for cone function being the efficacy outcome in clinical trials of gene augmentation therapy in LCA1.

Concepts: Mutation, Allele, Retina, Photoreceptor cell, Point mutation, Blindness, Leber's congenital amaurosis, GUCY2D

167

Friedreich’s ataxia (FRDA) is a progressive neurodegenerative disease characterized by ataxia, variously associating heart disease, diabetes mellitus and/or glucose intolerance. It results from intronic expansion of GAA triplet repeats at the FXN locus. Homozygous expansions cause silencing of the FXN gene and subsequent decreased expression of the encoded mitochondrial frataxin. Detailed analyses in fibroblasts and neuronal tissues from FRDA patients have revealed profound cytoskeleton anomalies. So far, however, the molecular mechanism underlying these cytoskeleton defects remains unknown. We show here that gene silencing spreads in cis over the PIP5K1B gene in cells from FRDA patients (circulating lymphocytes and primary fibroblasts), correlating with expanded GAA repeat size. PIP5K1B encodes phosphatidylinositol 4-phosphate 5-kinase β type I (pip5k1β), an enzyme functionally linked to actin cytoskeleton dynamics that phosphorylates phosphatidylinositol 4-phosphate (PI(4)P) to generate phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Accordingly, loss of pip5k1β function in FRDA cells was accompanied by decreased PI(4,5)P2 levels and was shown instrumental for destabilization of the actin network and delayed cell spreading. Knockdown of PIP5K1B in control fibroblasts using shRNA reproduced abnormal actin cytoskeleton remodeling, whereas over-expression of PIP5K1B, but not FXN, suppressed this phenotype in FRDA cells. While providing new insights into the consequences of the FXN gene expansion, these findings raise the question whether PIP5K1B silencing may contribute to the variable manifestation of this complex disease.

Concepts: DNA, Protein, Gene, Gene expression, Adenosine triphosphate, Diabetes mellitus, Glucose, Friedreich's ataxia

155

Binding of cellular α-dystroglycan (α-DG) to its extracellular matrix ligands is fully dependent on a unique O-mannose-linked glycan. Disrupted O-mannosylation is the hallmark of the muscular dystrophy-dystroglycanopathy (MDDG) syndromes. SLC35A1, encoding the transporter of CMP-sialic acid, was recently identified as MDDG candidate gene. This is surprising, since sialic acid itself is dispensable for α-DG-ligand binding. In a novel SLC35A1-deficient cell model, we demonstrated a lack of α-DG O-mannosylation, ligand binding and incorporation of sialic acids. Removal of sialic acids from HAP1 wild type cells after incorporation or preventing sialylation during synthesis did not affect α-DG O-mannosylation or ligand binding but did affect sialylation. Lentiviral-mediated complementation with the only known disease mutation p.Q101H failed to restore deficient O-mannosylation in SLC35A1 knockout cells and partly restored sialylation. These data indicate a role for SLC35A1 in α-DG O-mannosylation that is distinct from sialic acid metabolism. In addition, human SLC35A1 deficiency can be considered as a combined disorder of α-DG O-mannosylation and sialylation, a novel variant of the MDDG syndromes.

Concepts: DNA, Protein, Gene, Amine, Ammonia, Sialic acid, Ligand, Jason Statham