SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Human genomics

9

The field of pharmacogenomics (PGx) is gradually shifting from the reactive testing of single genes toward the proactive testing of multiple genes to improve treatment outcomes, reduce adverse events, and decrease the burden of unnecessary costs for healthcare systems. Despite the progress in the field of pharmacogenomics, its implementation into routine care has been slow due to several barriers. However, in recent years, the number of studies on the implementation of PGx has increased, all providing a wealth of knowledge on different solutions for overcoming the obstacles that have been emphasized over the past years. This review focuses on some of the challenges faced by these initiatives, the solutions and different approaches for testing that they suggest, and the evidence that they provide regarding the benefits of preemptive PGx testing.

7

The severity of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly heterogeneous. Studies have reported that males and some ethnic groups are at increased risk of death from COVID-19, which implies that individual risk of death might be influenced by host genetic factors.

7

Home to a culturally heterogeneous population, India is also a melting pot of genetic diversity. The population architecture characterized by multiple endogamous groups with specific marriage patterns, including the widely prevalent practice of consanguinity, not only makes the Indian population distinct from rest of the world but also provides a unique advantage and niche to understand genetic diseases. Centuries of genetic isolation of population groups have amplified the founder effects, contributing to high prevalence of recessive alleles, which translates into genetic diseases, including rare genetic diseases in India.Rare genetic diseases are becoming a public health concern in India because a large population size of close to a billion people would essentially translate to a huge disease burden for even the rarest of the rare diseases. Genomics-based approaches have been demonstrated to accelerate the diagnosis of rare genetic diseases and reduce the socio-economic burden. The Genomics for Understanding Rare Diseases: India Alliance Network (GUaRDIAN) stands for providing genomic solutions for rare diseases in India. The consortium aims to establish a unique collaborative framework in health care planning, implementation, and delivery in the specific area of rare genetic diseases. It is a nation-wide collaborative research initiative catering to rare diseases across multiple cohorts, with over 240 clinician/scientist collaborators across 70 major medical/research centers. Within the GUaRDIAN framework, clinicians refer rare disease patients, generate whole genome or exome datasets followed by computational analysis of the data for identifying the causal pathogenic variations. The outcomes of GUaRDIAN are being translated as community services through a suitable platform providing low-cost diagnostic assays in India. In addition to GUaRDIAN, several genomic investigations for diseased and healthy population are being undertaken in the country to solve the rare disease dilemma.In summary, rare diseases contribute to a significant disease burden in India. Genomics-based solutions can enable accelerated diagnosis and management of rare diseases. We discuss how a collaborative research initiative such as GUaRDIAN can provide a nation-wide framework to cater to the rare disease community of India.

7

Precision medicine in oncology relies on rapid associations between patient-specific variations and targeted therapeutic efficacy. Due to the advancement of genomic analysis, a vast literature characterizing cancer-associated molecular aberrations and relative therapeutic relevance has been published. However, data are not uniformly reported or readily available, and accessing relevant information in a clinically acceptable time-frame is a daunting proposition, hampering connections between patients and appropriate therapeutic options. One important therapeutic avenue for oncology patients is through clinical trials. Accordingly, a global view into the availability of targeted clinical trials would provide insight into strengths and weaknesses and potentially enable research focus. However, data regarding the landscape of clinical trials in oncology is not readily available, and as a result, a comprehensive understanding of clinical trial availability is difficult.

Concepts: Medicine, Clinical trial, Informed consent, The Canon of Medicine, Effectiveness, Avicenna, ClinicalTrials.gov

7

Known examples of ancient identical-by-descent genetic variants being shared between evolutionarily related species, known as trans-species polymorphisms (TSPs), result from counterbalancing selective forces acting on target genes to confer resistance against infectious agents. To date, putative TSPs between humans and other primate species have been identified for the highly polymorphic major histocompatibility complex (MHC), the histo-blood ABO group, two antiviral genes (ZC3HAV1 and TRIM5), an autoimmunity-related gene LAD1 and several non-coding genomic segments with a putative regulatory role. Although the number of well-characterized TSPs under long-term balancing selection is still very small, these examples are connected by a common thread, namely that they involve genes with key roles in the immune system and, in heterozygosity, appear to confer genetic resistance to pathogens. Here, we review known cases of shared polymorphism that appear to be under long-term balancing selection in humans and the great apes. Although the specific selective agent(s) responsible are still unknown, these TSPs may nevertheless be seen as constituting important adaptive events that have occurred during the evolution of the primate immune system.

Concepts: Immune system, Genetics, Bacteria, Evolution, Organism, Malaria, Infection, Major histocompatibility complex

7

Genome-wide association studies of complex physiological traits and diseases consistently found that associated genetic factors, such as allelic polymorphisms or DNA mutations, only explained a minority of the expected heritable fraction. This discrepancy is known as “missing heritability”, and its underlying factors and molecular mechanisms are not established. Epigenetic programs may account for a significant fraction of the “missing heritability.” Epigenetic modifications, such as DNA methylation and chromatin assembly states, reflect the high plasticity of the genome and contribute to stably alter gene expression without modifying genomic DNA sequences. Consistent components of complex traits, such as those linked to human stature/height, fertility, and food metabolism or to hereditary defects, have been shown to respond to environmental or nutritional condition and to be epigenetically inherited. The knowledge acquired from epigenetic genome reprogramming during development, stem cell differentiation/de-differentiation, and model organisms is today shedding light on the mechanisms of (a) mitotic inheritance of epigenetic traits from cell to cell, (b) meiotic epigenetic inheritance from generation to generation, and © true transgenerational inheritance. Such mechanisms have been shown to include incomplete erasure of DNA methylation, parental effects, transmission of distinct RNA types (mRNA, non-coding RNA, miRNA, siRNA, piRNA), and persistence of subsets of histone marks.

Concepts: DNA, Gene, Genetics, Gene expression, Histone, Epigenetics, RNA, DNA methylation

6

Precision medicine aims to empower clinicians to predict the most appropriate course of action for patients with complex diseases like cancer, diabetes, cardiomyopathy, and COVID-19. With a progressive interpretation of the clinical, molecular, and genomic factors at play in diseases, more effective and personalized medical treatments are anticipated for many disorders. Understanding patient’s metabolomics and genetic make-up in conjunction with clinical data will significantly lead to determining predisposition, diagnostic, prognostic, and predictive biomarkers and paths ultimately providing optimal and personalized care for diverse, and targeted chronic and acute diseases. In clinical settings, we need to timely model clinical and multi-omics data to find statistical patterns across millions of features to identify underlying biologic pathways, modifiable risk factors, and actionable information that support early detection and prevention of complex disorders, and development of new therapies for better patient care. It is important to calculate quantitative phenotype measurements, evaluate variants in unique genes and interpret using ACMG guidelines, find frequency of pathogenic and likely pathogenic variants without disease indicators, and observe autosomal recessive carriers with a phenotype manifestation in metabolome. Next, ensuring security┬áto reconcile noise, we need to build and train machine-learning prognostic models to meaningfully process multisource heterogeneous data to identify high-risk rare variants and make medically relevant predictions. The goal, today, is to facilitate implementation of mainstream precision medicine to improve the traditional symptom-driven practice of medicine, and allow earlier interventions using predictive diagnostics and tailoring better-personalized treatments. We strongly recommend automated implementation of cutting-edge technologies, utilizing machine learning (ML) and artificial intelligence (AI) approaches for the multimodal data aggregation, multifactor examination, development of knowledgebase of clinical predictors for decision support, and best strategies for dealing with relevant ethical issues.

6

Accumulating evidence suggests that adversities at critical periods in early life, both pre- and postnatal, can lead to neuroendocrine perturbations, including hypothalamic-pituitary-adrenal axis dysregulation and inflammation persisting up to adulthood. This process, commonly referred to as biological embedding, may cause abnormal cognitive and behavioral functioning, including impaired learning, memory, and depressive- and anxiety-like behaviors, as well as neuropsychiatric outcomes in later life. Currently, the regulation of gene activity by epigenetic mechanisms is suggested to be a key player in mediating the link between adverse early-life events and adult neurobehavioral outcomes. Role of particular genes, including those encoding glucocorticoid receptor, brain-derived neurotrophic factor, as well as arginine vasopressin and corticotropin-releasing factor, has been demonstrated in triggering early adversity-associated pathological conditions. This review is focused on the results from human studies highlighting the causal role of epigenetic mechanisms in mediating the link between the adversity during early development, from prenatal stages through infancy, and adult neuropsychiatric outcomes. The modulation of epigenetic pathways involved in biological embedding may provide promising direction toward novel therapeutic strategies against neurological and cognitive dysfunctions in adult life.

Concepts: DNA, Psychology, Gene, Hypothalamus, Gene expression, Biology, RNA, Pathology

6

In recent years, the translation of genomic discoveries into mainstream medical practice and public health has gained momentum, facilitated by the advent of new technologies. However, there are often major discrepancies in the pace of implementation of genomic medicine between developed and developing/resource-limited countries. The main reason does not only lie in the limitation of resources but also in the slow pace of adoption of the new findings and the poor understanding of the potential that this new discipline offers to rationalize medical diagnosis and treatment. Here, we present and critically discuss examples from the successful implementation of genomic medicine in resource-limited countries, focusing on pharmacogenomics, genome informatics, and public health genomics, emphasizing in the latter case genomic education, stakeholder analysis, and economics in pharmacogenomics. These examples can be considered as model cases and be readily replicated for the wide implementation of pharmacogenomics and genomic medicine in other resource-limited environments.

Concepts: Health care, Medicine, Public health, Genetics, Health, Genomics, Model organism, Avicenna

6

Inflammation is an essential immune response; however, chronic inflammation results in disease including Crohn’s disease. Therefore, reducing the inflammation can yield a significant health benefit, and one way to achieve this is through diet. We developed a Mediterranean-inspired anti-inflammatory diet and used this diet in a 6-week intervention in a Crohn’s disease population. We examined changes in inflammation and also in the gut microbiota. We compared the results of established biomarkers, C-reactive protein and the micronuclei assay, of inflammation with results from a transcriptomic approach.

Concepts: Immune system, Inflammation, Medicine, Gut flora, Nutrition, Asthma, Inflammatory bowel disease, C-reactive protein