Discover the most talked about and latest scientific content & concepts.

Journal: Heliyon


We present new evidence for the existence of a large pockmark field on the continental slope of the Santos Basin, offshore southeast Brazil. A recent high-resolution multibeam bathymetric survey revealed 984 pockmarks across a smooth seabed at water depths of 300-700 m. Four patterns of pockmark arrays were identified in the data: linear, network, concentric, and radial. Interpretation of Two-dimensional multi-channel seismic reflection profiles that crosscut the surveyed area shows numerous salt diapirs in various stages of development (e.g. salt domes, walls, and anticlines). Some diapirs were exposed on the seafloor, whereas the tops of others (diapir heads) were situated several hundreds of meters below the surface. Extensional faults typically cap these diapirs and reach shallow depths beneath the seafloor. Our analysis suggests that these pockmark patterns are linked to stages in the development of underlying diapirs and their related faults. The latter may extend above salt walls, take the form of polygonal extensional faults along higher-level salt anticlines, or concentric faults above diapir heads that reach close to the seafloor. Seismic data also revealed buried pockmark fields that had repeatedly developed since the Middle Miocene. The close spatio-temporal connection between pockmark and diapir distribution identified here suggests that the pockmark field extends further across the Campos and Espírito Santo Basins, offshore Brazil. Spatial overlap between the pockmark field topping a large diapir field and a proliferous hydrocarbon basin is believed to have facilitated the escape of fluid/gas from the subsurface to the water column, which was enhanced by halokinesis. This provides a possible control on fossil gas contribution to the marine system over geological time.

Concepts: Petroleum, Atlantic Ocean, Drainage basin, Natural gas, Evaporite, Reflection seismology, Salt dome, Diapir


Recently, there have been efforts by stakeholders to monitor illegal mining (galamsey)activities, foster their formalization and reclaim the many abandoned wastelands in Ghana. However, limited information exists on the locations, abundance, scope and scale of galamsey types, which hinders the development of effective policy response. This study attempts to map and analyze the distribution patterns, abundance, activity statuses and the extents of nine (9) galamsey types within eleven (11) Municipal and District Assemblies (MDAs) of Ghana’s Western Region. It explores the utility of field-based survey, using the Open Data Kit (ODK) system, ArcGIS and Google Earth Imagery to map and visualize different galamsey types under a hostile working environment. A total of 911 galamsey sightings, of which 547 were found in clusters (corresponding to approximately 7106 individual operational units) and 364 in stand-alone mode. Overall, a total of 7470 individual galamsey operations were encountered in 312 different communities (towns and villages). Operationally, the Alluvial Washing Board, Mill-House and Chamfi were found to be the three most popular and practiced galamsey types. The three main galamsey hotspot districts (out of the 11) are the Tarkwa Nsuaem (294 sightings and 3648 individual galamsey sites), Amenfi East (223 sightings and 1397 individual galamsey sites) and Prestea Huni-Valley Districts (156 sightings and 1130 individual galamsey sites). In terms of their activity statuses, 199 abandoned operations (entailing 1855 individual operations), 664 active (entailing 5055 individuals operations) and 48 semi-active (comprising 560 individuals within clusters) galamsey operations were sighted at the time of the study. Whilegalamseyis generally acknowledged to be widespread in Ghana, the results suggest a scale that probably surpasses any previous estimate or expectation. The findings will adequately inform the prioritization of reclamation efforts.

Concepts: Map, Individualism, Individual, Town, Gold mining, The Western, Reclaim, Reclaimed word


The study aimed to clarify the regularity of the motions of horse’s back, rider’s pelvis and spine associated with improvement of rider’s dynamic trunk alignment. The study used a crossover design, with exercise using the horseback riding simulator (simulator hereafter) as the control condition. The experiments were conducted at Tokyo University of Agriculture Bio-therapy Center. The sample consisted of 20 healthy volunteers age 20-23 years. Participants performed 15-min sessions of horseback riding with a Hokkaido Pony and exercise using the simulator in experiments separated by ≥2 weeks. Surface electromyography (EMG) after horseback riding revealed decreased activity in the erector spinae. Exploratory data analysis of acceleration and angular velocity inferred associations between acceleration (Rider’s neck/longitudinal axis [Y hereafter]) and angular velocity (Horse saddle/Y) as well as angular velocity (Rider’s pelvis/Y) and angular velocity (Horse saddle/Y). Acceleration (Rider’s neck/Y) tended to be associated with angular velocity (Rider’s pelvis/Y). Surface EMG following exercise revealed decreased activity in the rectus abdominis and erector spinae after the simulator exercise. Horseback riding improved the rider’s dynamic trunk alignment with a clear underlying mechanism, which was not observed with the simulator.


Stuffed animal sleepover programs have been conducted by libraries worldwide. This study sought to (1) determine whether the stuffed animal sleepover program increased children’s reading and (2) examine the duration of the effect. Forty-two children who attended preschool participated in the study. The results indicated that the number of children who read picture books to stuffed animals increased following the program, but the program’s effect decreased within three days. One month later, the children were reminded of the stuffed animal sleepover program. The number of children who read picture books to stuffed animals increased again after the reminder. The results suggest that (1) stuffed animal sleepover programs can positively affect children’s reading of picture books, (2) the duration of the program’s effect can be short, and (3) reminding children of the program can be an effective strategy to revive and sustain their interest in picture books. These results are discussed in terms of the psychological characteristics of childhood.

Concepts: Effect, Program, Jimi Hendrix, Stuffed toy


U.S. President John F. Kennedy was assassinated while riding in an open motorcade by a sniper in Dallas, Texas on 22 November 1963. A civilian bystander, Mr. Abraham Zapruder, filmed the motorcade with a 8-mm home movie camera as it drove through Dealey Plaza, inadvertently recording an ≈8 second sequence of events that included a fatal gunshot wound to the President in the head. The accompanying backward motion of the President’s head after impact appeared to support later “conspiracy theories” because it was claimed that this was proof of a shot from the front (in addition to one from behind). In this paper, simple one-dimensional dynamical models are uniquely applied to study in detail the fatal shot and the motion of the President’s head observed in the film. Using known parameters from the crime scene, explicit force calculations are carried out for determining the projectile’s retardation during tissue passage along with the resulting transfer of momentum and kinetic energy (KE). The computed instantaneous KE transfer within the soft tissue is found to be consistent with the formation of a temporary cavity associated with the observed explosion of the head, and subsequent quantitative examination of this phenomenon reveals two delayed forces at play in the backward motion of the President following impact. It is therefore found that the observed motions of President Kennedy in the film are physically consistent with a high-speed projectile impact from the rear of the motorcade, these resulting from an instantaneous forward impulse force, followed by delayed rearward recoil and neuromuscular forces.


A walnut supplement for a Western-style diet in men was shown to improve sperm motility, vitality, and morphology. To gain further insights into factors underlying this improvement, we administered a parallel walnut-enriched diet to mice [including those with a defect in sperm motility due to deletion of Plasma Membrane Ca(2+)-ATPase 4 (Pmca4(-/-) )] to determine if there is a similar improvement that is accompanied by reduced sperm membrane peroxidative damage. Although sperm vitality and acrosome reaction rate were unaffected, the diet led to a significant improvement in motility (P < 0.05) and morphology (P < 0.04) in wild-type sperm and in morphology (P < 0.01) in Pmca4(-/-) , confirming the diet's efficacy, which appeared to be more modest in mice than in humans. In both strains of mice, the diet resulted in a significant decrease in sperm lipid peroxidation (oxidative stress) levels, but did not rescue the significantly increased apoptotic levels seen in the testis and epididymis of Pmca4 nulls. Our findings support the effectiveness of walnuts on sperm quality, associated with reduced peroxidative damage; and suggest that oxidative stress is involved in the mechanism(s) underlying male reproductive defects in Pmca4(-/-) .

Concepts: Human, Reproduction, Antioxidant, Sperm, Andrology, Testicle, Reproductive system, Semen


The migration of Pacific salmon is an important part of functioning freshwater ecosystems, but as populations have decreased and ecological conditions have changed, so have migration patterns. Understanding how the environment, and human impacts, change salmon migration behavior requires observing migration at small temporal and spatial scales across large geographic areas. Studying these detailed fish movements is particularly important for one threatened population of Chinook salmon in the Snake River of Idaho whose juvenile behavior may be rapidly evolving in response to dams and anthropogenic impacts. However, exploring movement data sets of large numbers of salmon can present challenges due to the difficulty of visualizing the multivariate, time-series datasets. Previous research indicates that sonification, representing data using sound, has the potential to enhance exploration of multivariate, time-series datasets. We developed sonifications of individual fish movements using a large dataset of salmon otolith microchemistry from Snake River Fall Chinook salmon. Otoliths, a balance and hearing organ in fish, provide a detailed chemical record of fish movements recorded in the tree-like rings they deposit each day the fish is alive. This data represents a scalable, multivariate dataset of salmon movement ideal for sonification. We tested independent listener responses to validate the effectiveness of the sonification tool and mapping methods. The sonifications were presented in a survey to untrained listeners to identify salmon movements with increasingly more fish, with and without visualizations. Our results showed that untrained listeners were most sensitive to transitions mapped to pitch and timbre. Accuracy results were non-intuitive; in aggregate, respondents clearly identified important transitions, but individual accuracy was low. This aggregate effect has potential implications for the use of sonification in the context of crowd-sourced data exploration. The addition of more fish, and visuals, to the sonification increased response time in identifying transitions.

Concepts: Data set, Salmon, Chinook salmon, Oncorhynchus, Salmonidae, Kamchatka Peninsula, Atlantic salmon, Columbia River


Almost all living species regularly explore environments that they experience as pleasant, aversive, arousing or frightening. We postulate that such exploratory behavior and emotional experience both are regulated based on the interdependent perception of one’s body and stimuli that collectively define a spatial context such as a cliff. Here we examined this by testing if the interaction of the sensory input on one’s gait and the sensory input on the spatial context is modulating both the emotional experience of the environment and its exploration through head motion. To this end, we asked healthy humans to explore a life-sized Virtual Reality simulation of a forest glade by physically walking around in this environment on two narrow rectangular platforms connected by a plank. The platforms and the plank were presented such that they were either placed on ground or on the top of two high bridge piers. Hence, the forest glade was presented either as a “ground” or as a “height” context. Within these two spatial contexts the virtual plank was projected either on the rigid physical floor or onto a bouncy physical plank. Accordingly, the gait of our participants while they crossed the virtual plank was either “smooth” or “bouncy.” We found that in the height context bouncy gait compared to smooth gait increased the orientation of the head below the horizon and intensified the experience of the environment as negative. Whereas, within the ground context bouncy gait increased the orientation of the head towards and above the horizon and made that the environment was experienced as positive. Our findings suggest that the brain of healthy humans is using the interaction of the sensory input on their gait and the sensory input on the spatial context to regulate both the emotional experience of the environment and its exploration through head motion.

Concepts: Psychology, Human, Environment, Ecology, Natural environment, Sense, Virtual reality, Environmental science


Sweetpotato peptide (SPP) was prepared by enzyme digestion of sweetpotato protein from starch wastewater. Animal experiments assessed the effect of SPP on body weight, abdominal adipose tissue mass, serum lipids and adipocytokines. Body and liver weight and epididymal and mesenteric fat of mice fed a high-fat diet containing 0.5% or 5% SPP for 28 days were significantly lower than control mice. Triglyceride and cholesterol in VLDL and LDL and leptin levels were significantly lower in the serum of SPP-administered mice compared to control mice. Biomarker arrays showed that adiponectin, melanocyte-stimulating-hormone-alpha and neuromedin U were more than 1.5 times higher, while TNF-alpha was about 1.5 times lower in the livers of SPP-administered mice compared to control mice. These results suggest SPP mitigated leptin resistance in mice administered a high-fat diet, and maintained anorexigenic peptide levels. SPP administration may suppress lipogenesis by increasing adiponectin levels and decreasing TNF-alpha levels in adipocytes.

Concepts: Protein, Metabolism, Nutrition, Obesity, Liver, Fat, Adipose tissue, Leptin


In cancer patients with symptomatic venous thromboembolism (VTE) (deep-vein thrombosis (DVT) and/or pulmonary embolism (PE)), clinical factors that influence the benefit-risk balance of anticoagulation need to be identified so treatment intensity and duration can be optimally adjusted for the individual patient.

Concepts: Stroke, Pulmonary embolism, Hematology, Vein, Low molecular weight heparin, Anticoagulant, Deep vein thrombosis, Deep vein