SciCombinator

Discover the most talked about and latest scientific content & concepts.

Journal: Glycoconjugate journal

170

Brine shrimp are primitive crustacean arthropodal model organisms, second to daphnia, which can survive in high-salinity environments. Their oviposited cysts, cuticle-covered diapausing eggs, are highly resistant to dryness. To elucidate specialties of brine shrimp, this study characterized glycosphingolipids, which are signal transduction-associated material. A group of novel and complex fucosyl glycosphingolipids were separated and identified from cysts of the brine shrimp Artemia franciscana by repeated lipid extraction, alkaline methanolysis, acid treatment, successive column chromatography, and post-source decay measurements by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of the glycosphingolipids were elucidated by conventional structural characterization and mass spectrometry, and the compounds were identified as GlcNAcβ1-3GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer, GalNAcβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer, and GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer. These compounds also contained a branching, non-arthro-series disaccharide with an α-GlcNAc terminus, similar to that found in a previously reported ceramide hexasaccharide (III(3)(GlcNAcα2Fucα)-At4Cer). The glycans within these complex GSLs are longer than reported glycans of the animal kingdom containing α-GlcNAc terminus. These complex GSLs as well as the longest GSL with ten sugar residues, ceramide decasaccharide (CDeS), contain the fucosylated LacdiNAc sequence reported to associate with parasitism/immunosuppression and the α-GlcNAc terminus reported to show a certain antibacterial effect in other reports. CDeS, the longest GSL of this species, was found in the highest amount, which indicates that CDeS may be functionally important.

Concepts: Mass spectrometry, Arthropod, Crustacean, Brine shrimp, Branchiopoda, Time-of-flight, Artemia salina, Fairy shrimp

23

High temperature is known to cause some instability in polysaccharide-protein conjugated vaccines and studies under stress conditions may be useful in determining whether short-term accidental exposure to undesired conditions can compromise product quality. In this study, we examined the structural stability of three industrial batches of Brazilian Meningococcal C conjugate bulk (MPCT) incubated at 4, 37, and 55 °C for 5 weeks. The effect of exposure to the storage temperatures was monitored by HPLC-SEC, CZE, CD and NMR techniques. The immunological significance of any physicochemical changes observed in MPCT was determined by SBA and ELISA assays of serum from immunized mice. Fluorescence emission spectra at 4 and 37 °C were similar among all samples and compatible with the native fold of the carrier protein. Fluorescence spectra of MPCT stored at 55 °C decreased in intensity and had a significant red-shift, indicating conformational changes. Far-UV CD spectra revealed a trend toward loss of structural conformation as storage temperature was increased to 55 °C. The NMR data showed modified signal intensity of the aromatic and aliphatic residues, mainly for samples incubated at 55 °C, suggesting a partial loss of tertiary structure. About 50% free saccharide content was found in bulks stored at 55 °C, but no difference was observed in the IgG or SBA titers. The present study showed physicochemical methods alone are insufficient to predict the biological activity of a MPCT conjugate vaccine without extensive validation against immunological data. However, they provide a sensitive means of detecting changes induced in a vaccine exposed to adverse environmental condition.

Concepts: Immune system, Fluorescence, Vaccination, Light, Immunology, Temperature, ELISA, Conformation

23

The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.

Concepts: Cancer, Breast cancer, Metastasis, Oncology, Lung cancer, Prostate cancer, Testicular cancer, Sialyl lewis x

2

Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19-9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis.

Concepts: Immune system, Antibody, Protein, Cancer, Sialic acid, Carbohydrate chemistry, Glycoprotein, Sialyl lewis x

1

We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.

0

Grifola frondosa is a basidiomycete fungus with potential biomedical applications owing to the presence of bioactive polysaccharides. The activities of polysaccharides are influenced by many factors, particularly temperature; however, the optimal temperature and conditions for preparation of polysaccharides from this organism have not yet been determined. Therefore, in this study, cold-water soluble polysaccharides from Grifola frondosa were extracted at 4 °C (GFP-4) and purified. GFP-4-30, GFP-4-60 and GFP-4-90 were obtained from GFP-4 after treatment at 30 °C, 60 °C, or 90 °C, respectively, for 6 h. MTT results showed that GFP-4 had the highest inhibitory effects on the proliferation of SPC-A-1 cells in vitro. High-performance gel permeation chromatography results demonstrated that the molecular weight of GFP-4 was 1.05 × 106 Da and that GFP-4-30, GFP-4-60, and GFP-4-90 showed different levels of degradation and generated small molecule sugars. Fourier transform infrared spectroscopy, gas chromatography, and nuclear magnetic resonance results indicated that GFPs mainly consisted of α-D-Galp, α-D-Manp and α-D-Glcp. Periodate oxidation, Smith degradation, and methylation results showed that the backbones of the molecules consisted of 1,3-linked-Galp. After heat treatment, percentages of (1 → 3,4) α-D-Galp in heat-treated polysaccharides were obviously decreased, indicating their lower branching degree, and resulting in weaker antitumor effects. Overall, our findings demonstrated changes in the structure-activity relationships of GFP-4 after heat treatment and provided a theoretical basis for the application of GFP-4 in the food and drug industries.

0

Dystroglycanopathies are diseases characterized by progressive muscular degeneration and impairment of patient’s quality of life. They are associated with altered glycosylation of the dystrophin-glycoprotein (DGC) complex components, such as α-dystroglycan (α-DG), fundamental in the structural and functional stability of the muscle fiber. The diagnosis of dystroglycanopathies is currently based on the observation of clinical manifestations, muscle biopsies and enzymatic measures, and the available monoclonal antibodies are not specific for the dystrophic hypoglycosylated muscle condition. Thus, modified α-DG mucins have been considered potential targets for the development of new diagnostic strategies toward these diseases. In this context, this work describes the synthesis of the hypoglycosylated α-DG mimetic glycopeptide NHAc-Gly-Pro-Thr-Val-Thr[αMan]-Ile-Arg-Gly-BSA (1) as a potential tool for the development of novel antibodies applicable to dystroglycanopathies diagnosis. Glycopeptide 1 was used for the development of polyclonal antibodies and recombinant monoclonal antibodies by Phage Display technology. Accordingly, polyclonal antibodies were reactive to glycopeptide 1, which enables the application of anti-glycopeptide 1 antibodies in immune reactive assays targeting hypoglycosylated α-DG. Regarding monoclonal antibodies, for the first time variable heavy (VH) and variable light (VL) immunoglobulin domains were selected by Phage Display, identified by NGS and described by in silico analysis. The best-characterized VH and VL domains were cloned, expressed in E. coli Shuffle T7 cells, and used to construct a single chain fragment variable that recognized the Glycopeptide 1 (GpαDG1 scFv). Molecular modelling of glycopeptide 1 and GpαDG1 scFv suggested that their interaction occurs through hydrogen bonds and hydrophobic contacts involving amino acids from scFv (I51, Y33, S229, Y235, and P233) and R8 and α-mannose from Glycopeptide 1.

0

The surface of microorganisms is covered with polysaccharide structures which are in immediate contact with receptor structures on host’s cells and antibodies. The interaction between microorganisms and their host is dependent on surface glycosylation and in this study we have tested the interaction of plant lectins with different microorganisms. Enzyme-linked lectin sorbent assay - ELLSA was used to test the binding of recombinant Musa acuminata lectin - BL to 27 selected microorganisms and 7 other lectins were used for comparison: Soy bean agglutinin - SBA, Lens culinaris lectin - LCA, Wheat germ agglutinin - WGA, RCA120 - Ricinus communis agglutinin, Con A - from Canavalia ensiformis, Sambucus nigra agglutinin - SNA I and Maackia amurensis agglutinin - MAA. The goal was to define the microorganisms' surface glycosylation by means of interaction with the selected plant lectins and to make a comparison with BL. Among the tested lectins most selective binding was observed for RCA120 which preferentially bound Lactobacillus casei DG. Recombinant banana lectin showed specific binding to all of the tested fungal species. The binding of BL to Candida albicans was further tested with fluorescence microscopy and flow cytometry and it was concluded that this lectin can differentiate ß-glucan rich surfaces. The binding of BL to S. boulardii could be inhibited with ß-glucan from yeast with IC50 1.81 μg mL-1 and to P. roqueforti with 1.10 μg mL-1. This unique specificity of BL could be exploited for screening purposes and potentially for the detection of ß-glucan in solutions.

0

Sialidases or neuraminidases play important roles in various physiological and pathological processes by cleaving terminal sialic acids (Sias) (desialylation) from the glycans of both glycoproteins and glycolipids. To understand the biological significance of desialylation by sialidases, it is important to investigate enzyme specificity with native substrate in biological membrane of cells. Herein, we report a membrane-mimicking system with liposome ganglioside conjugates containing different lipids for evaluating substrate specificity of sialidase and the lipid effect on the enzyme activity. Briefly, liposomes of phosphatidylcholine (PC) and cholesterol with ganglioside (GM3 or GM1) along with different percentage of phosphatidylserine (PS) or phosphatidylethanolamine (PE) were prepared and characterized. Their desialylation profiles with Arthrobacter ureafaciens (bacterial) sialidase and H1N1 (influenza viral) sialidase were quantified by HPLC method. A diversity of substrate preference was found for both bacterial and viral sialidase to the liposome ganglioside conjugate platform. The apparent Km and Vmax were dependent on the type of lipid. These results indicate that the intrinsic characteristics of the membrane-like system affect the sialidase specificity and activity. This biomimetic substrate provides a better tool for unravelling the substrate specificity and the biological function of sialidases and for screening of functional sialidase inhibitors as well.

0

Fucosylated oligosaccharides are interesting molecules due to their bioactive properties. In particular, their application as active ingredient in milk powders is attractive for dairy industries. The objective of this study was to characterize the glycosyl hydrolase family 29 α-fucosidase produced by Aspergillus niger and test its ability to transfucosylate lactose with a view towards potential industrial applications such as the valorization of the lactose side stream produced by dairy industry. In order to reduce costs and toxicity the use of free fucose instead of environmentally questionable fucose derivatives was studied. In contrast to earlier studies, a recombinantly produced A. niger α-fucosidase was utilized. Using pNP-fucose as substrate, the optimal pH for hydrolytic activity was determined to be 3.8. The optimal temperature for a 30-min reaction was 60 °C, and considering temperature stability, the optimal temperature for a 24-h reaction was defined as 45 °C For the same hydrolysis reaction, the kinetic values were calculated to be 0.385 mM for the KM and 2.8 mmol/(mg*h) for the Vmax. Transfucosylation of lactose occurred at high substrate concentrations when reaction time was elongated to several days. The structure of the product trisaccharide was defined as 1-fucosyllactose, where fucose is α-linked to the anomeric carbon of the β-glucose moiety of lactose. Furthermore, the enzyme was able to hydrolyze its own transfucosylation product and 2'-fucosyllactose but only poorly 3-fucosyllactose. As a conclusion, α-fucosidase from A. niger can transfucosylate lactose using free fucose as substrate producing a novel non-reducing 1-fucosyllactose.