Discover the most talked about and latest scientific content & concepts.

Journal: Glycoconjugate journal


Brine shrimp are primitive crustacean arthropodal model organisms, second to daphnia, which can survive in high-salinity environments. Their oviposited cysts, cuticle-covered diapausing eggs, are highly resistant to dryness. To elucidate specialties of brine shrimp, this study characterized glycosphingolipids, which are signal transduction-associated material. A group of novel and complex fucosyl glycosphingolipids were separated and identified from cysts of the brine shrimp Artemia franciscana by repeated lipid extraction, alkaline methanolysis, acid treatment, successive column chromatography, and post-source decay measurements by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Structures of the glycosphingolipids were elucidated by conventional structural characterization and mass spectrometry, and the compounds were identified as GlcNAcβ1-3GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer, GalNAcβ1-4(Fucα1-3)GlcNAcβ1-3GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer, and GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3GalNAcβ1-4(GlcNAcα1-2Fucα1-3)GlcNAcβ1-3Manβ1-4Glcβ1-Cer. These compounds also contained a branching, non-arthro-series disaccharide with an α-GlcNAc terminus, similar to that found in a previously reported ceramide hexasaccharide (III(3)(GlcNAcα2Fucα)-At4Cer). The glycans within these complex GSLs are longer than reported glycans of the animal kingdom containing α-GlcNAc terminus. These complex GSLs as well as the longest GSL with ten sugar residues, ceramide decasaccharide (CDeS), contain the fucosylated LacdiNAc sequence reported to associate with parasitism/immunosuppression and the α-GlcNAc terminus reported to show a certain antibacterial effect in other reports. CDeS, the longest GSL of this species, was found in the highest amount, which indicates that CDeS may be functionally important.

Concepts: Mass spectrometry, Arthropod, Crustacean, Brine shrimp, Branchiopoda, Time-of-flight, Artemia salina, Fairy shrimp


High temperature is known to cause some instability in polysaccharide-protein conjugated vaccines and studies under stress conditions may be useful in determining whether short-term accidental exposure to undesired conditions can compromise product quality. In this study, we examined the structural stability of three industrial batches of Brazilian Meningococcal C conjugate bulk (MPCT) incubated at 4, 37, and 55 °C for 5 weeks. The effect of exposure to the storage temperatures was monitored by HPLC-SEC, CZE, CD and NMR techniques. The immunological significance of any physicochemical changes observed in MPCT was determined by SBA and ELISA assays of serum from immunized mice. Fluorescence emission spectra at 4 and 37 °C were similar among all samples and compatible with the native fold of the carrier protein. Fluorescence spectra of MPCT stored at 55 °C decreased in intensity and had a significant red-shift, indicating conformational changes. Far-UV CD spectra revealed a trend toward loss of structural conformation as storage temperature was increased to 55 °C. The NMR data showed modified signal intensity of the aromatic and aliphatic residues, mainly for samples incubated at 55 °C, suggesting a partial loss of tertiary structure. About 50% free saccharide content was found in bulks stored at 55 °C, but no difference was observed in the IgG or SBA titers. The present study showed physicochemical methods alone are insufficient to predict the biological activity of a MPCT conjugate vaccine without extensive validation against immunological data. However, they provide a sensitive means of detecting changes induced in a vaccine exposed to adverse environmental condition.

Concepts: Immune system, Fluorescence, Vaccination, Light, Immunology, Temperature, ELISA, Conformation


The hallmarks of cancer are characterized by functional capabilities that allow cancer cells to survive, proliferate and disseminate during the multistep tumorigenesis. Cancer being a cellular disease, changes in cellular glycoproteins play an important role in malignant transformation and cancer progression. The present review summarizes various studies that depicted correlation of glycosylation with tumor initiation, progression and metastasis, which are helpful in early diagnosis, disease monitoring and prognosis. The results are further strengthened by our reports, which depicted alterations in sialylation and fucosylation in different cancers. Alterations in glycosyltransferases are also involved in formation of various tumor antigens (e.g. Sialyl Lewis x) which serves as ligand for the cell adhesion molecule, selectin which is involved in adhesion of cancer cells to vascular endothelium and thus contributes to hematogenous metastasis. Increased glycosylation accompanied by alterations in glycosyltranferases, glycosidases, glycans and mucins (MUC)s are also involved in loss of E-cadherin, a key molecule implicated in metastatic dissemination of cells. The present review also summarizes the correlation of glycosylation with all the hallmarks of cancer. The enormous progress in the design of novel inhibitors of pathway intermediates of sialylation and fucosylation can prove wonders in combating the dreadful disease. The results provide the evidence that altered glycosylation is linked to tumor initiation, progression and metastasis. Hence, it can be considered as a new hallmark of cancer development and strategies to develop novel glycosylation targeted molecules should be strengthened.

Concepts: Cancer, Breast cancer, Metastasis, Oncology, Lung cancer, Prostate cancer, Testicular cancer, Sialyl lewis x


Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19-9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis.

Concepts: Immune system, Antibody, Protein, Cancer, Sialic acid, Carbohydrate chemistry, Glycoprotein, Sialyl lewis x


We have explored the fundamental biological processes by which complex carbohydrates expressed on cellular glycoproteins and glycolipids and in secretions of cells promote cell adhesion and signaling. We have also explored processes by which animal pathogens, such as viruses, bacteria, and parasites adhere to glycans of animal cells and initiate disease. Glycans important in cell signaling and adhesion, such as key O-glycans, are essential for proper animal development and cellular differentiation, but they are also involved in many pathogenic processes, including inflammation, tumorigenesis and metastasis, and microbial and parasitic pathogenesis. The overall hypothesis guiding these studies is that glycoconjugates are recognized and bound by a growing class of proteins called glycan-binding proteins (GBPs or lectins) expressed by all types of cells. There is an incredible variety and diversity of GBPs in animal cells involved in binding N- and O-glycans, glycosphingolipids, and proteoglycan/glycosaminoglycans. We have specifically studied such molecular determinants recognized by selectins, galectins, and many other C-type lectins, involved in leukocyte recruitment to sites of inflammation in human tissues, lymphocyte trafficking, adhesion of human viruses to human cells, structure and immunogenicity of glycoproteins on the surfaces of human parasites. We have also explored the molecular basis of glycoconjugate biosynthesis by exploring the enzymes and molecular chaperones required for correct protein glycosylation. From these studies opportunities for translational biology have arisen, involving production of function-blocking antibodies, anti-glycan specific antibodies, and synthetic glycoconjugates, e.g. glycosulfopeptides, that specifically are recognized by GBPs. This invited short review is based in part on my presentation for the IGO Award 2019 given by the International Glycoconjugate Organization in Milan.


Retinal degenerative diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are major causes of blindness worldwide. Humans cannot regenerate retina, however, axolotl (Ambystoma mexicanum), a laboratory-bred salamander, can regenerate retinal tissue throughout adulthood. Classic signaling pathways, including fibroblast growth factor (FGF), are involved in axolotl regeneration. Glycosaminoglycan (GAG) interaction with FGF is required for signal transduction in this pathway. GAGs are anionic polysaccharides in extracellular matrix (ECM) that have been implicated in limb and lens regeneration of amphibians, however, GAGs have not been investigated in the context of retinal regeneration. GAG composition is characterized native and decellularized axolotl and porcine retina using liquid chromatography mass spectrometry. Pig was used as a mammalian vertebrate model without the ability to regenerate retina. Chondroitin sulfate (CS) was the main retinal GAG, followed by heparan sulfate (HS), hyaluronic acid, and keratan sulfate in both native and decellularized axolotl and porcine retina. Axolotl retina exhibited a distinctive GAG composition pattern in comparison with porcine retina, including a higher content of hyaluronic acid. In CS, higher levels of 4- and 6- O-sulfation were observed in axolotl retina. The HS composition was greater in decellularized tissues in both axolotl and porcine retina by 7.1% and 15.4%, respectively, and different sulfation patterns were detected in axolotl. Our findings suggest a distinctive GAG composition profile of the axolotl retina set foundation for role of GAGs in homeostatic and regenerative conditions of the axolotl retina and may further our understanding of retinal regenerative models.


Three polysaccharides (SH-1, SH-2 and SH-3) were purified from a brown macroalgea, Sargassum hemiphyllum. The autohydrolysis products from each polysaccharide were separated to three fractions (S fractions as oligomers, L fractions as low molecular weight polysaccharides and H fractions as high molecular weight polysaccharides). Mass spectroscopy of S fractions (SH-1-S, SH-2-S and SH-3-S) showed that these three polymers all contained short stretches of sulfated fucose. The structures of L fractions (SH-1-L, SH-2-L and SH-3-L) were determined by nuclear magnetic resonance (NMR). SH-1-L was composed of two units, unit A (sulfated galactofucan) and unit B (sulfated xylo-glucuronomannan). Unit A contained a backbone of (1, 6-linked β-D-Gal) n1, (1, 3-linked 4-sulfated α-L-Fuc) n2, (1, 3-linked 2, 4-di-sulfated α-L-Fuc) n3, (1, 4-linked α-L-Fuc) n4 and (1, 3-linked β-D-Gal) n5, accompanied by some branches, such as sulfated fuco-oligomers, sulfated galacto-oligomers or sulfated galacto-fuco-oligomers. And unit B consisted of alternating 1, 4-linked β-D-glucuronic acid (GlcA) and 1, 2-linked α-D-mannose (Man) with the Man residues randomly sulfated at C6 or branched with xylose (Xyl) at C3. Both SH-2-L and SH-3-L were composed of unit A and their difference was attributed to the ratio of n1: n2: n3: n4: n5. Based on monosaccharide analysis, we hypothesize that both SH-1-H and SH-2-H contained unit A and unit B while SH-3-H had a structure similar to SH-3-L. An assessment of anti-complement activities showed that the sulfated galactofucan had higher activities than sulfated galacto-fuco-xylo-glucuronomannan. These results suggest that the sulfated galactofucans might be a good candidate for anti-complement drugs.


A concise synthetic strategy has been developed for the synthesis of the pentasaccharide repeating unit of the cell wall O-antigen of Escherichia coli O43 strain involving stereoselective β-D-mannosylation and α-L-fucosylation using corresponding trichloroacetimidate intermediates and perchloric acid supported over silica (HClO4-SiO2) as glycosylation promoter. The yield and stereoselectivity of the glycosylations were very good.


Aberrant glycosylation is a featured characteristic of cancer and plays a role in cancer pathology; thus an understanding of the compositions and functions of glycans is critical for discovering diagnostic biomarkers and therapeutic targets for cancer. In this study, we used MALDI-TOF-MS analysis to determine the O-glycan profiles of prostate cancer cells metastasized to bone (PC-3), brain (DU145), lymph node (LNCaP), and vertebra (VCaP) in comparison to immortalized RWPE-1 cells derived from normal prostatic tissue. Prostate cancer (CaP) cells exhibited an elevation of simple/short O-glycans, with a reduction of complex O-glycans, increased O-glycan sialylation and decreased fucosylation. Core 1 sialylation was increased dramatically in all CaP cells, and especially in PC-3 cells. The expression of Neu5Acα2-3Galβ1-3GalNAc- (sialyl-3T antigen) which is the product of α2,3-sialyltransferase-I (ST3Gal-I) was substantially increased. We therefore focused on exploring the possible function of ST3Gal-I in PC-3 cells. ST3Gal-I silencing studies showed that ST3Gal-I was associated with PC-3 cell proliferation, migration and apoptosis. Further in vivo studies demonstrated that down regulation of ST3Gal-I reduced the tumor size in xenograft mouse model, indicating that sialyl-3T can serve as a biomarker for metastatic prostate cancer prognosis, and that ST3Gal-I could be a target for therapeutic intervention in cancer treatment.


In this study, a novel water soluble polysaccharide (named GFP-4) was extracted from Grifola frondosa at 4 oC, and its preliminary structure and inhibitory effects on human gastric carcinoma MKN-45 cells through the Fas/FasL death receptor apoptosis pathway were investigated. High-performance gel permeation chromatography (HPGPC), fourier-transform infrared spectroscopy (FT-IR), and ion chromatography (IC) results showed that GFP-4 was a 1.09 × 106 Da neutral hetero polysaccharide with pyranose rings, and α- and β-type glycosidic linkages that contained galactose, glucose, and mannose at a molar ratio of 1.00:3.45:1.19. MTT results indicated that GFP-4 significantly inhibited the proliferation of MKN-45 cells in a concentration-dependent manner. The H&E staining and Hoechst 33342/PI double staining results showed that GFP-4-treated MKN-45 cells were subjected to underwent typical apoptotic morphologic changes such as nuclear pyknosis, chromatin condensation, and an increase of membrane permeability. Annexin V-FITC/PI double staining, cell cycle analysis, and western blot results revealed the GFP-4 induced MKN-45 cells apoptosis through the Fas/FasL-mediated death receptor pathway with cells arrested at the G0/G1 phase. These data indicate that GFP-4 is a promising candidate for treating gastric cancer and provide a theoretical basis for the future development and utilization of G. frondosa clinically.